BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33684819)

  • 1. Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products.
    Rasoulnia P; Barthen R; Puhakka JA; Lakaniemi AM
    J Hazard Mater; 2021 Jul; 414():125564. PubMed ID: 33684819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology.
    Otron AMA; Millogo TJF; Tran LH; Blais JF
    Environ Technol; 2023 Aug; ():1-13. PubMed ID: 37524656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation.
    Porvali A; Agarwal V; Lundström M
    Waste Manag; 2020 Apr; 107():66-73. PubMed ID: 32278217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni-Metal Hydride Batteries: Statistical Studies.
    Weshahy AR; Gouda AA; Atia BM; Sakr AK; Al-Otaibi JS; Almuqrin A; Hanfi MY; Sayyed MI; El Sheikh R; Radwan HA; Hassen FS; Gado MA
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.
    Tanong K; Coudert L; Chartier M; Mercier G; Blais JF
    Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder.
    Hopfe S; Konsulke S; Barthen R; Lehmann F; Kutschke S; Pollmann K
    Waste Manag; 2018 Sep; 79():554-563. PubMed ID: 30343787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans.
    Klasen R; Bringer-Meyer S; Sahm H
    J Bacteriol; 1995 May; 177(10):2637-43. PubMed ID: 7751271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.
    Sobianowska-Turek A
    Waste Manag; 2018 Jul; 77():213-219. PubMed ID: 29655922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching Mechanisms of Industrial Powders of Spent Nickel Metal Hydride Batteries in a Pilot-Scale Reactor.
    Zielinski M; Cassayre L; Destrac P; Coppey N; Garin G; Biscans B
    ChemSusChem; 2020 Feb; 13(3):616-628. PubMed ID: 31746557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable and Consolidated Microbial Platform for Rare Earth Element Leaching and Recovery from Waste Sources.
    Good NM; Kang-Yun CS; Su MZ; Zytnick AM; Barber CC; Vu HN; Grace JM; Nguyen HH; Zhang W; Skovran E; Fan M; Park DM; Martinez-Gomez NC
    Environ Sci Technol; 2024 Jan; 58(1):570-579. PubMed ID: 38150661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE).
    Yuksekdag A; Kose-Mutlu B; Zeytuncu-Gokoglu B; Kumral M; Wiesner MR; Koyuncu I
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7772-7781. PubMed ID: 34476712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.