BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33684819)

  • 21. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes.
    Shin DJ; Joo SH; Oh CH; Wang JP; Park JT; Min DJ; Shin SM
    Environ Technol; 2019 Nov; 40(26):3512-3522. PubMed ID: 29799331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles.
    Brewer A; Dror I; Berkowitz B
    Chemosphere; 2022 Jan; 287(Pt 2):132217. PubMed ID: 34826916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.
    Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K
    Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoric acid purification sludge: Potential in heavy metals and rare earth elements.
    Salem M; Souissi R; Souissi F; Abbes N; Moutte J
    Waste Manag; 2019 Jan; 83():46-56. PubMed ID: 30514470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological leaching of rare earth elements.
    Mowafy AM
    World J Microbiol Biotechnol; 2020 Apr; 36(4):61. PubMed ID: 32285218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaching of rare earth elements from phosphogypsum.
    Lütke SF; Oliveira MLS; Waechter SR; Silva LFO; Cadaval TRS; Duarte FA; Dotto GL
    Chemosphere; 2022 Aug; 301():134661. PubMed ID: 35452647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biohydrometallurgy for Rare Earth Elements Recovery from Industrial Wastes.
    Castro L; Blázquez ML; González F; Muñoz JÁ
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications.
    Kataoka N
    Biosci Biotechnol Biochem; 2024 Apr; 88(5):499-508. PubMed ID: 38323387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus.
    Kataoka N; Naoki K; Ano Y; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7751-7761. PubMed ID: 36271931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus.
    Kataoka N; Matsutani M; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2015 May; 81(10):3552-60. PubMed ID: 25769838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.