These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33684965)
1. Systematic inhibitor selectivity between PARP1 and PARP2 enzymes: Molecular implications for ovarian cancer personalized therapy. Zuo X; Zhao H; Li D J Mol Recognit; 2021 Jul; 34(7):e2891. PubMed ID: 33684965 [TBL] [Abstract][Full Text] [Related]
2. Poly (ADP-Ribose) Polymerases (PARPs) and PARP Inhibitor-Targeted Therapeutics. Li N; Wang Y; Deng W; Lin SH Anticancer Agents Med Chem; 2019; 19(2):206-212. PubMed ID: 30417796 [TBL] [Abstract][Full Text] [Related]
3. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Suskiewicz MJ; Zobel F; Ogden TEH; Fontana P; Ariza A; Yang JC; Zhu K; Bracken L; Hawthorne WJ; Ahel D; Neuhaus D; Ahel I Nature; 2020 Mar; 579(7800):598-602. PubMed ID: 32028527 [TBL] [Abstract][Full Text] [Related]
5. Leveraging shape screening and molecular dynamics simulations to optimize PARP1-Specific chemo/radio-potentiators for antitumor drug design. Khizer H; Maryam A; Ansari A; Ahmad MS; Khalid RR Arch Biochem Biophys; 2024 Jun; 756():110010. PubMed ID: 38642632 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888. Karlberg T; Hammarström M; Schütz P; Svensson L; Schüler H Biochemistry; 2010 Feb; 49(6):1056-8. PubMed ID: 20092359 [TBL] [Abstract][Full Text] [Related]
7. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057 [TBL] [Abstract][Full Text] [Related]
8. Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast. Perkins E; Sun D; Nguyen A; Tulac S; Francesco M; Tavana H; Nguyen H; Tugendreich S; Barthmaier P; Couto J; Yeh E; Thode S; Jarnagin K; Jain A; Morgans D; Melese T Cancer Res; 2001 May; 61(10):4175-83. PubMed ID: 11358842 [TBL] [Abstract][Full Text] [Related]
9. Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}- Johannes JW; Balazs A; Barratt D; Bista M; Chuba MD; Cosulich S; Critchlow SE; Degorce SL; Di Fruscia P; Edmondson SD; Embrey K; Fawell S; Ghosh A; Gill SJ; Gunnarsson A; Hande SM; Heightman TD; Hemsley P; Illuzzi G; Lane J; Larner C; Leo E; Liu L; Madin A; Martin S; McWilliams L; O'Connor MJ; Orme JP; Pachl F; Packer MJ; Pei X; Pike A; Schimpl M; She H; Staniszewska AD; Talbot V; Underwood E; Varnes JG; Xue L; Yao T; Zhang K; Zhang AX; Zheng X J Med Chem; 2021 Oct; 64(19):14498-14512. PubMed ID: 34570508 [TBL] [Abstract][Full Text] [Related]
10. New Targeted Agents in Gynecologic Cancers: Synthetic Lethality, Homologous Recombination Deficiency, and PARP Inhibitors. Liu FW; Tewari KS Curr Treat Options Oncol; 2016 Mar; 17(3):12. PubMed ID: 26931795 [TBL] [Abstract][Full Text] [Related]
11. Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer. Zhou Q; Ji M; Zhou J; Jin J; Xue N; Chen J; Xu B; Chen X Biochem Pharmacol; 2016 May; 107():29-40. PubMed ID: 26920250 [TBL] [Abstract][Full Text] [Related]
12. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Thorsell AG; Ekblad T; Karlberg T; Löw M; Pinto AF; Trésaugues L; Moche M; Cohen MS; Schüler H J Med Chem; 2017 Feb; 60(4):1262-1271. PubMed ID: 28001384 [TBL] [Abstract][Full Text] [Related]
13. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles. Yeong KY; Tan SC; Mai CW; Leong CO; Chung FF; Lee YK; Chee CF; Abdul Rahman N Chem Biol Drug Des; 2018 Jan; 91(1):213-219. PubMed ID: 28719017 [TBL] [Abstract][Full Text] [Related]
14. Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging. Zhang H; Lin X; Zha S Biochem Soc Trans; 2022 Aug; 50(4):1169-1177. PubMed ID: 35959996 [TBL] [Abstract][Full Text] [Related]
15. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update. Jain PG; Patel BD Eur J Med Chem; 2019 Mar; 165():198-215. PubMed ID: 30684797 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Aoyagi-Scharber M; Gardberg AS; Yip BK; Wang B; Shen Y; Fitzpatrick PA Acta Crystallogr F Struct Biol Commun; 2014 Sep; 70(Pt 9):1143-9. PubMed ID: 25195882 [TBL] [Abstract][Full Text] [Related]
17. Development of Next-Generation Poly(ADP-Ribose) Polymerase 1-Selective Inhibitors. Ngoi NYL; Leo E; O'Connor MJ; Yap TA Cancer J; 2021 Nov-Dec 01; 27(6):521-528. PubMed ID: 34904816 [TBL] [Abstract][Full Text] [Related]
18. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor. Cao R J Mol Model; 2016 Apr; 22(4):74. PubMed ID: 26969680 [TBL] [Abstract][Full Text] [Related]
19. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. Putri JF; Bhargava P; Dhanjal JK; Yaguchi T; Sundar D; Kaul SC; Wadhwa R J Exp Clin Cancer Res; 2019 Dec; 38(1):499. PubMed ID: 31856867 [TBL] [Abstract][Full Text] [Related]
20. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. Ghosh R; Roy S; Kamyab J; Danzter F; Franco S DNA Repair (Amst); 2016 Sep; 45():56-62. PubMed ID: 27373144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]