These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33685157)

  • 1. Formation of hot ice caused by carbon nanobrushes. II. Dependency on the radius of nanotubes.
    Matsumoto M; Yagasaki T; Tanaka H
    J Chem Phys; 2021 Mar; 154(9):094502. PubMed ID: 33685157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase diagram of water in carbon nanotubes.
    Takaiwa D; Hatano I; Koga K; Tanaka H
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):39-43. PubMed ID: 18162549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanical stability and buckling analysis of carbon nanotubes filled with ice nanotubes in the aqueous environment: A molecular dynamics simulation approach.
    Ajori S; Ameri A; Ansari R
    J Mol Graph Model; 2019 Jun; 89():74-81. PubMed ID: 30870651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of water molecules in carbon nanotubes under electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    J Chem Phys; 2015 Mar; 142(12):124701. PubMed ID: 25833597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations.
    Yuan X; Wang Y
    Nanotechnology; 2018 Feb; 29(7):075705. PubMed ID: 29256867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram.
    Liu Y; Huang Y; Zhu C; Li H; Zhao J; Wang L; Ojamäe L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12684-12691. PubMed ID: 31182582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Hypothetical ultralow-density ice polymorphs.
    Matsui T; Hirata M; Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2017 Sep; 147(9):091101. PubMed ID: 28886658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel ice structures in carbon nanopores: pressure enhancement effect of confinement.
    Jazdzewska M; Sliwinska-Bartkowiak MM; Beskrovnyy AI; Vasilovskiy SG; Ting SW; Chan KY; Huang L; Gubbins KE
    Phys Chem Chem Phys; 2011 May; 13(19):9008-13. PubMed ID: 21451863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy in geometrically rough structure of ice prismatic plane interface during growth: Development of a modified six-site model of H
    Nada H
    J Chem Phys; 2016 Dec; 145(24):244706. PubMed ID: 28049310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h).
    Gladich I; Roeselová M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11371-85. PubMed ID: 22801804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.