These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33685158)

  • 1. Polar diatomic molecules in optical cavities: Photon scaling, rotational effects, and comparison with classical fields.
    Triana JF; Sanz-Vicario JL
    J Chem Phys; 2021 Mar; 154(9):094120. PubMed ID: 33685158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating nonadiabatic conical intersection dynamics by optical cavities.
    Gu B; Mukamel S
    Chem Sci; 2019 Dec; 11(5):1290-1298. PubMed ID: 34123253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polariton induced conical intersection and berry phase.
    Farag MH; Mandal A; Huo P
    Phys Chem Chem Phys; 2021 Aug; 23(31):16868-16879. PubMed ID: 34328152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entangled Photonic-Nuclear Molecular Dynamics of LiF in Quantum Optical Cavities.
    Triana JF; Peláez D; Sanz-Vicario JL
    J Phys Chem A; 2018 Mar; 122(8):2266-2278. PubMed ID: 29338227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the Photostability of Pyrrole with Optical Nanocavities.
    Gudem M; Kowalewski M
    J Phys Chem A; 2021 Feb; 125(5):1142-1151. PubMed ID: 33464084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the Presence of Potential Crossings in Diatomics Induced by Quantum Cavity Radiation.
    Triana JF; Sanz-Vicario JL
    Phys Rev Lett; 2019 Feb; 122(6):063603. PubMed ID: 30822050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-adiabatic dynamics of molecules in optical cavities.
    Kowalewski M; Bennett K; Mukamel S
    J Chem Phys; 2016 Feb; 144(5):054309. PubMed ID: 26851923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings.
    Kowalewski M; Bennett K; Mukamel S
    J Phys Chem Lett; 2016 Jun; 7(11):2050-4. PubMed ID: 27186666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity-induced non-adiabatic dynamics and spectroscopy of molecular rovibrational polaritons studied by multi-mode quantum models.
    Fischer EW; Saalfrank P
    J Chem Phys; 2022 Jul; 157(3):034305. PubMed ID: 35868933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic and light-induced nonadiabatic phenomena in the NaI molecule.
    Csehi A; Halász GJ; Cederbaum LS; Vibók Á
    Phys Chem Chem Phys; 2017 Aug; 19(30):19656-19664. PubMed ID: 28489085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conical Intersections Induced by Quantum Light: Field-Dressed Spectra from the Weak to the Ultrastrong Coupling Regimes.
    Szidarovszky T; Halász GJ; Császár AG; Cederbaum LS; Vibók Á
    J Phys Chem Lett; 2018 Nov; 9(21):6215-6223. PubMed ID: 30296095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized Fock States and the Dynamical Casimir Effect in Molecular Cavity Quantum Electrodynamics.
    Mandal A; Montillo Vega S; Huo P
    J Phys Chem Lett; 2020 Nov; 11(21):9215-9223. PubMed ID: 32991814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models.
    Hu D; Huo P
    J Chem Theory Comput; 2023 Apr; 19(8):2353-2368. PubMed ID: 37000936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry.
    Flick J; Narang P
    J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics.
    Buchholz F; Theophilou I; Giesbertz KJH; Ruggenthaler M; Rubio A
    J Chem Theory Comput; 2020 Sep; 16(9):5601-5620. PubMed ID: 32692551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry.
    Flick J; Ruggenthaler M; Appel H; Rubio A
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3026-3034. PubMed ID: 28275094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Conical Intersection Dynamics of Two Pyrazine Molecules in an Optical Cavity.
    Gu B; Mukamel S
    J Phys Chem Lett; 2020 Jul; 11(14):5555-5562. PubMed ID: 32531166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced conical intersections in polyatomic molecules: general theory, strategies of exploitation, and application.
    Demekhin PV; Cederbaum LS
    J Chem Phys; 2013 Oct; 139(15):154314. PubMed ID: 24160520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine.
    Cho D; Gu B; Mukamel S
    J Am Chem Soc; 2022 May; 144(17):7758-7767. PubMed ID: 35404593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.