These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 33685175)
1. Quantum bath effects on nonequilibrium heat transport in model molecular junctions. Carpio-Martínez P; Hanna G J Chem Phys; 2021 Mar; 154(9):094108. PubMed ID: 33685175 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium heat transport in a molecular junction: A mixed quantum-classical approach. Carpio-Martínez P; Hanna G J Chem Phys; 2019 Aug; 151(7):074112. PubMed ID: 31438711 [TBL] [Abstract][Full Text] [Related]
3. Heat transfer statistics in mixed quantum-classical systems. Liu J; Hsieh CY; Segal D; Hanna G J Chem Phys; 2018 Dec; 149(22):224104. PubMed ID: 30553258 [TBL] [Abstract][Full Text] [Related]
4. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem. Nicolin L; Segal D J Chem Phys; 2011 Oct; 135(16):164106. PubMed ID: 22047227 [TBL] [Abstract][Full Text] [Related]
5. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. Kato A; Tanimura Y J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915 [TBL] [Abstract][Full Text] [Related]
9. Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems. Liu H; Wang C; Wang LQ; Ren J Phys Rev E; 2019 Mar; 99(3-1):032114. PubMed ID: 30999465 [TBL] [Abstract][Full Text] [Related]
10. Stochastic simulation of nonequilibrium heat conduction in extended molecular junctions. Sharony I; Chen R; Nitzan A J Chem Phys; 2020 Oct; 153(14):144113. PubMed ID: 33086795 [TBL] [Abstract][Full Text] [Related]
11. Two-level system in spin baths: non-adiabatic dynamics and heat transport. Segal D J Chem Phys; 2014 Apr; 140(16):164110. PubMed ID: 24784256 [TBL] [Abstract][Full Text] [Related]
12. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach. Kilgour M; Agarwalla BK; Segal D J Chem Phys; 2019 Feb; 150(8):084111. PubMed ID: 30823775 [TBL] [Abstract][Full Text] [Related]
13. Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence. Kato A; Tanimura Y J Chem Phys; 2015 Aug; 143(6):064107. PubMed ID: 26277127 [TBL] [Abstract][Full Text] [Related]
14. Transient exchange fluctuation theorems for heat using a Hamiltonian framework: Classical and quantum regimes. Pal PS; Lahiri S; Jayannavar AM Phys Rev E; 2017 Apr; 95(4-1):042124. PubMed ID: 28505812 [TBL] [Abstract][Full Text] [Related]
15. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Xu YY; Chen B; Liu J Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214 [TBL] [Abstract][Full Text] [Related]
16. Test of fluctuation theorems in non-Markovian open quantum systems. Kawamoto T; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031116. PubMed ID: 22060337 [TBL] [Abstract][Full Text] [Related]
17. Steady-state quantum transport through an anharmonic oscillator strongly coupled to two heat reservoirs. Chen T; Balachandran V; Guo C; Poletti D Phys Rev E; 2020 Jul; 102(1-1):012155. PubMed ID: 32794992 [TBL] [Abstract][Full Text] [Related]
18. Exact time-dependent analytical solutions for entropy production rate in a system operating in a heat bath in which temperature varies linearly in space. Taye MA Phys Rev E; 2022 May; 105(5-1):054126. PubMed ID: 35706249 [TBL] [Abstract][Full Text] [Related]
19. Nonequilibrium Equation of State for Open Hamiltonian Systems Maintained in Nonequilibrium Steady States. Wu W; Wang J J Phys Chem B; 2022 Oct; 126(40):7883-7894. PubMed ID: 36191253 [TBL] [Abstract][Full Text] [Related]
20. Simulating quantum thermodynamics of a finite system and bath with variable temperature. Lotshaw PC; Kellman ME Phys Rev E; 2019 Oct; 100(4-1):042105. PubMed ID: 31770971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]