These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33685182)
1. CAS without SCF-Why to use CASCI and where to get the orbitals. Levine BG; Durden AS; Esch MP; Liang F; Shu Y J Chem Phys; 2021 Mar; 154(9):090902. PubMed ID: 33685182 [TBL] [Abstract][Full Text] [Related]
2. Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. Shu Y; Hohenstein EG; Levine BG J Chem Phys; 2015 Jan; 142(2):024102. PubMed ID: 25591333 [TBL] [Abstract][Full Text] [Related]
3. Geometry optimization of radicaloid systems using improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method. Chattopadhyay S; Chaudhuri RK; Freed KF J Phys Chem A; 2011 Apr; 115(16):3665-78. PubMed ID: 20586459 [TBL] [Abstract][Full Text] [Related]
5. Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters. Shu Y; Levine BG J Chem Phys; 2013 Aug; 139(7):074102. PubMed ID: 23968067 [TBL] [Abstract][Full Text] [Related]
6. Molecular applications of analytical gradient approach for the improved virtual orbital-complete active space configuration interaction method. Chaudhuri RK; Chattopadhyay S; Mahapatra US; Freed KF J Chem Phys; 2010 Jan; 132(3):034105. PubMed ID: 20095726 [TBL] [Abstract][Full Text] [Related]
7. Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. Slavícek P; Martínez TJ J Chem Phys; 2010 Jun; 132(23):234102. PubMed ID: 20572684 [TBL] [Abstract][Full Text] [Related]
8. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units. Hohenstein EG; Bouduban ME; Song C; Luehr N; Ufimtsev IS; Martínez TJ J Chem Phys; 2015 Jul; 143(1):014111. PubMed ID: 26156469 [TBL] [Abstract][Full Text] [Related]
9. Improved virtual orbitals in state specific multireference perturbation theory for prototypes of quasidegenerate electronic structure. Sinha Ray S; Ghosh P; Chaudhuri RK; Chattopadhyay S J Chem Phys; 2017 Feb; 146(6):064111. PubMed ID: 28201907 [TBL] [Abstract][Full Text] [Related]
10. State-specific multireference perturbation theory with improved virtual orbitals: taming the ground state of F2 , Be2, and N2. Chattopadhyay S; Chaudhuri RK; Mahapatra US J Comput Chem; 2015 May; 36(12):907-25. PubMed ID: 25740004 [TBL] [Abstract][Full Text] [Related]
11. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals. Bao JJ; Truhlar DG J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880 [TBL] [Abstract][Full Text] [Related]
12. Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. Pijeau S; Hohenstein EG J Chem Theory Comput; 2017 Mar; 13(3):1130-1146. PubMed ID: 28157312 [TBL] [Abstract][Full Text] [Related]
13. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors. Fales BS; Shu Y; Levine BG; Hohenstein EG J Chem Phys; 2017 Sep; 147(9):094104. PubMed ID: 28886625 [TBL] [Abstract][Full Text] [Related]
14. Application of an efficient multireference approach to free-base porphin and metalloporphyrins: ground, excited, and positive ion states. Chaudhuri RK; Freed KF; Chattopadhyay S; Mahapatra US J Chem Phys; 2011 Aug; 135(8):084118. PubMed ID: 21895170 [TBL] [Abstract][Full Text] [Related]
15. High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited States. Lu Z; Matsika S J Chem Theory Comput; 2012 Feb; 8(2):509-17. PubMed ID: 26596601 [TBL] [Abstract][Full Text] [Related]
16. Selection of active spaces for multiconfigurational wavefunctions. Keller S; Boguslawski K; Janowski T; Reiher M; Pulay P J Chem Phys; 2015 Jun; 142(24):244104. PubMed ID: 26133407 [TBL] [Abstract][Full Text] [Related]
17. CASCI Reference Wave Functions for Multireference Perturbation Theory Built from Hartree-Fock or Kohn-Sham Orbitals. Robinson D; McDouall JJ J Chem Theory Comput; 2007 Jul; 3(4):1306-11. PubMed ID: 26633204 [TBL] [Abstract][Full Text] [Related]
18. Description of the Methylene Amidogene Radical and Its Anion with an Economical Treatment of Correlation Effects Using Density Functional Theory Orbitals. Chaudhuri RK; Chattopadhyay S J Phys Chem A; 2021 Jan; 125(2):543-558. PubMed ID: 33417452 [TBL] [Abstract][Full Text] [Related]
19. Efficient Implementation of the Second-Order Quasidegenerate Perturbation Theory with Density-Fitting and Cholesky Decomposition Approximations: Is It Possible To Use Hartree-Fock Orbitals for a Multiconfigurational Perturbation Theory? Bozkaya U J Chem Theory Comput; 2019 Aug; 15(8):4415-4429. PubMed ID: 31318552 [TBL] [Abstract][Full Text] [Related]
20. Toward Reliable Prediction of Hyperfine Coupling Constants Using Ab Initio Density Matrix Renormalization Group Method: Diatomic (2)Σ and Vinyl Radicals as Test Cases. Lan TN; Kurashige Y; Yanai T J Chem Theory Comput; 2014 May; 10(5):1953-67. PubMed ID: 26580523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]