These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33686069)

  • 1. Deep learning-based enhancement of epigenomics data with AtacWorks.
    Lal A; Chiang ZD; Yakovenko N; Duarte FM; Israeli J; Buenrostro JD
    Nat Commun; 2021 Mar; 12(1):1507. PubMed ID: 33686069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data.
    Thibodeau A; Khetan S; Eroglu A; Tewhey R; Stitzel ML; Ucar D
    PLoS Comput Biol; 2021 Dec; 17(12):e1009670. PubMed ID: 34898596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures.
    Rai V; Quang DX; Erdos MR; Cusanovich DA; Daza RM; Narisu N; Zou LS; Didion JP; Guan Y; Shendure J; Parker SCJ; Collins FS
    Mol Metab; 2020 Feb; 32():109-121. PubMed ID: 32029221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci.
    Perrin HJ; Currin KW; Vadlamudi S; Pandey GK; Ng KK; Wabitsch M; Laakso M; Love MI; Mohlke KL
    PLoS Genet; 2021 Oct; 17(10):e1009865. PubMed ID: 34699533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq.
    Massarat AR; Sen A; Jaureguy J; Tyndale ST; Fu Y; Erikson G; McVicker G
    Nucleic Acids Res; 2021 Aug; 49(14):7986-7994. PubMed ID: 34313779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic Analysis in Ewing Sarcoma.
    Simon JM; Gomez NC
    Methods Mol Biol; 2021; 2226():285-302. PubMed ID: 33326110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of single cell ATAC-seq data with SnapATAC.
    Fang R; Preissl S; Li Y; Hou X; Lucero J; Wang X; Motamedi A; Shiau AK; Zhou X; Xie F; Mukamel EA; Zhang K; Zhang Y; Behrens MM; Ecker JR; Ren B
    Nat Commun; 2021 Feb; 12(1):1337. PubMed ID: 33637727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic alteration of ATAC-seq for profiling open chromatin in cryopreserved nuclei preparations from livestock tissues.
    Halstead MM; Kern C; Saelao P; Chanthavixay G; Wang Y; Delany ME; Zhou H; Ross PJ
    Sci Rep; 2020 Mar; 10(1):5230. PubMed ID: 32251359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution ATAC-Seq Analysis of Frozen Clinical Tissues.
    Cejas P; Long HW
    Methods Mol Biol; 2022; 2458():259-267. PubMed ID: 35103972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic evaluation of Hi-C data enhancement methods for enhancing PLAC-seq and HiChIP data.
    Huang L; Yang Y; Li G; Jiang M; Wen J; Abnousi A; Rosen JD; Hu M; Li Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35488276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation.
    Reske JJ; Wilson MR; Chandler RL
    Epigenetics Chromatin; 2020 Apr; 13(1):22. PubMed ID: 32321567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-capacity sample multiplexing for single cell chromatin accessibility profiling.
    Booth GT; Daza RM; Srivatsan SR; McFaline-Figueroa JL; Gladden RG; Mullen AC; Furlan SN; Shendure J; Trapnell C
    BMC Genomics; 2023 Dec; 24(1):737. PubMed ID: 38049719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-Peaks: ChIP-Seq peak detection pipeline using convolutional neural networks that imitate human visual inspection.
    Oh D; Strattan JS; Hur JK; Bento J; Urban AE; Song G; Cherry JM
    Sci Rep; 2020 May; 10(1):7933. PubMed ID: 32404971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data.
    Nordström KJV; Schmidt F; Gasparoni N; Salhab A; Gasparoni G; Kattler K; Müller F; Ebert P; Costa IG; ; Pfeifer N; Lengauer T; Schulz MH; Walter J
    Nucleic Acids Res; 2019 Nov; 47(20):10580-10596. PubMed ID: 31584093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.