These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33686069)

  • 21. Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data.
    Nordström KJV; Schmidt F; Gasparoni N; Salhab A; Gasparoni G; Kattler K; Müller F; Ebert P; Costa IG; ; Pfeifer N; Lengauer T; Schulz MH; Walter J
    Nucleic Acids Res; 2019 Nov; 47(20):10580-10596. PubMed ID: 31584093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unified Analysis of Multiple ChIP-Seq Datasets.
    Ma G; Babarinde IA; Zhuang Q; Hutchins AP
    Methods Mol Biol; 2021; 2198():451-465. PubMed ID: 32822050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. OCRDetector: Accurately Detecting Open Chromatin Regions via Plasma Cell-Free DNA Sequencing Data.
    Wang J; Chen L; Zhang X; Tong Y; Zheng T
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HiCoP, a simple and robust method for detecting interactions of regulatory regions.
    Zhang Y; Li Z; Bian S; Zhao H; Feng D; Chen Y; Hou Y; Liu Q; Hao B
    Epigenetics Chromatin; 2020 Jul; 13(1):27. PubMed ID: 32611439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome.
    Zhao Y; Hou Y; Xu Y; Luan Y; Zhou H; Qi X; Hu M; Wang D; Wang Z; Fu Y; Li J; Zhang S; Chen J; Han J; Li X; Zhao S
    Nat Commun; 2021 Apr; 12(1):2217. PubMed ID: 33850120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [ATAC-seq and its applications in complex disease].
    Chen M; Zhang Z; Meng ZY; Zhang XJ
    Yi Chuan; 2020 Apr; 42(4):347-353. PubMed ID: 32312703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATAC-pipe: general analysis of genome-wide chromatin accessibility.
    Zuo Z; Jin Y; Zhang W; Lu Y; Li B; Qu K
    Brief Bioinform; 2019 Sep; 20(5):1934-1943. PubMed ID: 29982337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues.
    Halstead MM; Kern C; Saelao P; Wang Y; Chanthavixay G; Medrano JF; Van Eenennaam AL; Korf I; Tuggle CK; Ernst CW; Zhou H; Ross PJ
    BMC Genomics; 2020 Oct; 21(1):698. PubMed ID: 33028202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cancer classification based on chromatin accessibility profiles with deep adversarial learning model.
    Yang H; Wei Q; Li D; Wang Z
    PLoS Comput Biol; 2020 Nov; 16(11):e1008405. PubMed ID: 33166290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning on Chromatin Accessibility.
    Kim DS
    Methods Mol Biol; 2023; 2611():325-333. PubMed ID: 36807077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU.
    Fang CH; Theera-Ampornpunt N; Roth MA; Grama A; Chaterji S
    BMC Bioinformatics; 2019 Oct; 20(1):488. PubMed ID: 31590652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq.
    Lu RJ; Liu YT; Huang CW; Yen MR; Lin CY; Chen PY
    Front Genet; 2020; 11():618478. PubMed ID: 33584814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tracking Histone Modifications in Embryos and Low-Input Samples Using Ultrasensitive STAR ChIP-Seq.
    Zhang B; Peng X; Xu F; Xie W
    Methods Mol Biol; 2021; 2214():241-252. PubMed ID: 32944914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J; Quan JP; Ye Y; Wu ZF; Yang J; Yang M; Zheng EQ
    Yi Chuan; 2020 Apr; 42(4):333-346. PubMed ID: 32312702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data.
    Bravo González-Blas C; Minnoye L; Papasokrati D; Aibar S; Hulselmans G; Christiaens V; Davie K; Wouters J; Aerts S
    Nat Methods; 2019 May; 16(5):397-400. PubMed ID: 30962623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assay for Transposase-Accessible Chromatin-Sequencing Using
    Bright AR; Veenstra GJC
    Cold Spring Harb Protoc; 2019 Jan; 2019(1):. PubMed ID: 30042136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell chromatin accessibility reveals principles of regulatory variation.
    Buenrostro JD; Wu B; Litzenburger UM; Ruff D; Gonzales ML; Snyder MP; Chang HY; Greenleaf WJ
    Nature; 2015 Jul; 523(7561):486-90. PubMed ID: 26083756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TempoMAGE: a deep learning framework that exploits the causal dependency between time-series data to predict histone marks in open chromatin regions at time-points with missing ChIP-seq datasets.
    Hallal M; Awad M; Khoueiry P
    Bioinformatics; 2021 Dec; 37(23):4336-4342. PubMed ID: 34255822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.