These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33686180)

  • 1. Correlation analysis between lower limb muscle architectures and cycling power via ultrasonography.
    Lee HJ; Lee KW; Takeshi K; Lee YW; Kim HJ
    Sci Rep; 2021 Mar; 11(1):5362. PubMed ID: 33686180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between Cycling Power and Muscle Thickness in Cyclists.
    Lee HJ; Lee KW; Lee YW; Kim HJ
    Clin Anat; 2018 Sep; 31(6):899-906. PubMed ID: 29770501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quadriceps and Gastrocnemii Anatomical Cross-Sectional Area and Vastus Lateralis Fascicle Length Predict Peak-Power and Time-To-Peak-Power.
    Coratella G; Longo S; Rampichini S; Limonta E; Shokohyar S; Bisconti AV; Cè E; Esposito F
    Res Q Exerc Sport; 2020 Mar; 91(1):158-165. PubMed ID: 31609180
    [No Abstract]   [Full Text] [Related]  

  • 4. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Cycling-specific Vibration on Neuromuscular Performance.
    Viellehner J; Potthast W
    Med Sci Sports Exerc; 2021 May; 53(5):936-944. PubMed ID: 33196607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and morphological determinants of peak power output in elite cyclists.
    Kordi M; Folland J; Goodall S; Haralabidis N; Maden-Wilkinson T; Sarika Patel T; Leeder J; Barratt P; Howatson G
    Scand J Med Sci Sports; 2020 Feb; 30(2):227-237. PubMed ID: 31598998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural anatomy of the quadriceps and the relationship with muscle strength: An observational study utilising real-time ultrasound in healthy adults.
    El-Ansary D; Marshall CJ; Farragher J; Annoni R; Schwank A; McFarlane J; Bryant A; Han J; Webster M; Zito G; Parry S; Pranata A
    J Anat; 2021 Oct; 239(4):847-855. PubMed ID: 34458993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of applied cadence in repeated sprint cycling on muscle characteristics.
    Klich S; Michalik K; Pietraszewski B; Hansen EA; Madeleine P; Kawczyński A
    Eur J Appl Physiol; 2024 May; 124(5):1609-1620. PubMed ID: 38175273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vastus intermedius muscle architecture predicts the late phase of the knee extension rate of force development in recreationally resistance-trained men.
    Coratella G; Longo S; Borrelli M; Doria C; Cè E; Esposito F
    J Sci Med Sport; 2020 Nov; 23(11):1100-1104. PubMed ID: 32416973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riding posture affects quadriceps femoris oxygenation during an incremental cycle exercise in cycle-based athletes.
    Saito A; Goda M; Yamagishi T; Kawakami Y
    Physiol Rep; 2018 Aug; 6(16):e13832. PubMed ID: 30125046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vasti morphology on peak sprint cycling power of a human musculoskeletal simulation model.
    Bobbert MF; Casius LJR; van der Zwaard S; Jaspers RT
    J Appl Physiol (1985); 2020 Feb; 128(2):445-455. PubMed ID: 31854247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training.
    Ema R; Wakahara T; Miyamoto N; Kanehisa H; Kawakami Y
    Eur J Appl Physiol; 2013 Nov; 113(11):2691-703. PubMed ID: 23949789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography.
    da Silva JC; Tarassova O; Ekblom MM; Andersson E; Rönquist G; Arndt A
    Eur J Appl Physiol; 2016 Sep; 116(9):1807-17. PubMed ID: 27448605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    J Appl Physiol (1985); 2018 Apr; 124(4):993-1002. PubMed ID: 29357487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular Parameters Predict the Performance in an Incremental Cycling Test.
    García-García O; Cuba-Dorado A; Fernández-Redondo D; López-Chicharro J
    Int J Sports Med; 2018 Nov; 39(12):909-915. PubMed ID: 30086573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quadriceps femoris motor pattern for efficient cycling.
    Hering GO; Bertschinger R; Stepan J
    PLoS One; 2023; 18(3):e0282391. PubMed ID: 36928839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of workload level on the timing of concentric-eccentric contractions during cycling.
    Lanferdini FJ; Bini RR; Vaz MA
    J Sports Med Phys Fitness; 2022 Sep; 62(9):1170-1178. PubMed ID: 35084166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Maximal Incremental Test in Cyclists Causes Greater Peripheral Fatigue in Biceps Femoris.
    García-García O; Cuba-Dorado A; Riveiro-Bozada A; Carballo-López J; Álvarez-Yates T; López-Chicharro J
    Res Q Exerc Sport; 2020 Sep; 91(3):460-468. PubMed ID: 31906803
    [No Abstract]   [Full Text] [Related]  

  • 20. Chronic eccentric cycling improves quadriceps muscle structure and maximum cycling power.
    Leong CH; McDermott WJ; Elmer SJ; Martin JC
    Int J Sports Med; 2014 Jun; 35(7):559-65. PubMed ID: 24234011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.