BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

836 related articles for article (PubMed ID: 33686237)

  • 1. Beyond immune checkpoint blockade: emerging immunological strategies.
    Kubli SP; Berger T; Araujo DV; Siu LL; Mak TW
    Nat Rev Drug Discov; 2021 Dec; 20(12):899-919. PubMed ID: 33686237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy.
    Pan C; Liu H; Robins E; Song W; Liu D; Li Z; Zheng L
    J Hematol Oncol; 2020 Apr; 13(1):29. PubMed ID: 32245497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning tumors from cold to inflamed to improve immunotherapy response.
    Gerard CL; Delyon J; Wicky A; Homicsko K; Cuendet MA; Michielin O
    Cancer Treat Rev; 2021 Dec; 101():102227. PubMed ID: 34656019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
    Bader JE; Voss K; Rathmell JC
    Mol Cell; 2020 Jun; 78(6):1019-1033. PubMed ID: 32559423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy.
    Wei G; Zhang H; Zhao H; Wang J; Wu N; Li L; Wu J; Zhang D
    Cancer Lett; 2021 Jul; 511():68-76. PubMed ID: 33957184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challenges.
    Duan J; Wang Y; Jiao S
    Cancer Med; 2018 Sep; 7(9):4517-4529. PubMed ID: 30088347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies.
    Ajina R; Zahavi DJ; Zhang YW; Weiner LM
    Semin Cancer Biol; 2020 Oct; 65():28-37. PubMed ID: 31866479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic.
    Dzobo K
    OMICS; 2020 Apr; 24(4):175-179. PubMed ID: 32176591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. It takes two to tango: the role of tumor-associated macrophages in T cell-directed immune checkpoint blockade therapy.
    Sheban F
    Front Immunol; 2023; 14():1183578. PubMed ID: 37359522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.
    Fukumura D; Kloepper J; Amoozgar Z; Duda DG; Jain RK
    Nat Rev Clin Oncol; 2018 May; 15(5):325-340. PubMed ID: 29508855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity.
    Donlon NE; Power R; Hayes C; Reynolds JV; Lysaght J
    Cancer Lett; 2021 Apr; 502():84-96. PubMed ID: 33450360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy and predictive immunologic profile: the tip of the iceberg.
    Cunha Pereira T; Rodrigues-Santos P; Almeida JS; Rêgo Salgueiro F; Monteiro AR; Macedo F; Soares RF; Domingues I; Jacinto P; Sousa G
    Med Oncol; 2021 Mar; 38(5):51. PubMed ID: 33788049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor Hypoxia: A Key Determinant of Microenvironment Hostility and a Major Checkpoint during the Antitumor Response.
    Francis A; Venkatesh GH; Zaarour RF; Zeinelabdin NA; Nawafleh HH; Prasad P; Buart S; Terry S; Chouaib S
    Crit Rev Immunol; 2018; 38(6):505-524. PubMed ID: 31002604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.
    Wu M; Huang Q; Xie Y; Wu X; Ma H; Zhang Y; Xia Y
    J Hematol Oncol; 2022 Mar; 15(1):24. PubMed ID: 35279217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Big opportunities for small molecules in immuno-oncology.
    Adams JL; Smothers J; Srinivasan R; Hoos A
    Nat Rev Drug Discov; 2015 Sep; 14(9):603-22. PubMed ID: 26228631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.