BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

836 related articles for article (PubMed ID: 33686237)

  • 21. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies.
    Galon J; Bruni D
    Nat Rev Drug Discov; 2019 Mar; 18(3):197-218. PubMed ID: 30610226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systemic CD4 Immunity as a Key Contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy.
    Zuazo M; Arasanz H; Bocanegra A; Fernandez G; Chocarro L; Vera R; Kochan G; Escors D
    Front Immunol; 2020; 11():586907. PubMed ID: 33329566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment.
    Pennock GK; Chow LQ
    Oncologist; 2015 Jul; 20(7):812-22. PubMed ID: 26069281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters.
    Wang S; Xie K; Liu T
    Front Immunol; 2021; 12():690112. PubMed ID: 34367148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity.
    Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumour microenvironment (TME) characterization identified prognosis and immunotherapy response in muscle-invasive bladder cancer (MIBC).
    Cao R; Yuan L; Ma B; Wang G; Tian Y
    Cancer Immunol Immunother; 2021 Jan; 70(1):1-18. PubMed ID: 32617668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunotherapy in aggressive B-cell lymphomas.
    Jacobson CA; Armand P
    Best Pract Res Clin Haematol; 2018 Sep; 31(3):299-305. PubMed ID: 30213400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What Happens to the Immune Microenvironment After PD-1 Inhibitor Therapy?
    Wang Q; Xie B; Liu S; Shi Y; Tao Y; Xiao D; Wang W
    Front Immunol; 2021; 12():773168. PubMed ID: 35003090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intravenous injection of the oncolytic virus M1 awakens antitumor T cells and overcomes resistance to checkpoint blockade.
    Liu Y; Cai J; Liu W; Lin Y; Guo L; Liu X; Qin Z; Xu C; Zhang Y; Su X; Deng K; Yan G; Liang J
    Cell Death Dis; 2020 Dec; 11(12):1062. PubMed ID: 33311488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical Pharmacology Considerations for the Development of Immune Checkpoint Inhibitors.
    Sheng J; Srivastava S; Sanghavi K; Lu Z; Schmidt BJ; Bello A; Gupta M
    J Clin Pharmacol; 2017 Oct; 57 Suppl 10():S26-S42. PubMed ID: 28921644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turning Cold into Hot: Firing up the Tumor Microenvironment.
    Duan Q; Zhang H; Zheng J; Zhang L
    Trends Cancer; 2020 Jul; 6(7):605-618. PubMed ID: 32610070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors.
    Gjoerup O; Brown CA; Ross JS; Huang RSP; Schrock A; Creeden J; Fabrizio D; Tolba K
    AAPS J; 2020 Oct; 22(6):132. PubMed ID: 33057937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prognostic Biomarkers for Melanoma Immunotherapy.
    Twitty CG; Huppert LA; Daud AI
    Curr Oncol Rep; 2020 Feb; 22(3):25. PubMed ID: 32048065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immune Checkpoint Regulators: A New Era Toward Promising Cancer Therapy.
    Shaaban M; Othman H; Ibrahim T; Ali M; Abdelmoaty M; Abdel-Kawi AR; Mostafa A; El Nakeeb A; Emam H; Refaat A
    Curr Cancer Drug Targets; 2020; 20(6):429-460. PubMed ID: 32321404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy.
    Ayala-Mar S; Donoso-Quezada J; González-Valdez J
    J Immunol Res; 2021; 2021():8839978. PubMed ID: 33628854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy.
    Giannone G; Ghisoni E; Genta S; Scotto G; Tuninetti V; Turinetto M; Valabrega G
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Complexity of Targeting Chemokines to Promote a Tumor Immune Response.
    Strazza M; Mor A
    Inflammation; 2020 Aug; 43(4):1201-1208. PubMed ID: 32314127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer.
    Georganaki M; van Hooren L; Dimberg A
    Front Immunol; 2018; 9():3081. PubMed ID: 30627131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.