These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33686415)
1. Characterization of a cryptic, pyrroloquinoline quinone-dependent dehydrogenase of Gluconobacter sp. strain CHM43. Nguyen TM; Naoki K; Kataoka N; Matsutani M; Ano Y; Adachi O; Matsushita K; Yakushi T Biosci Biotechnol Biochem; 2021 Mar; 85(4):998-1004. PubMed ID: 33686415 [TBL] [Abstract][Full Text] [Related]
2. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Yakushi T; Terada Y; Ozaki S; Kataoka N; Akakabe Y; Adachi O; Matsutani M; Matsushita K Appl Microbiol Biotechnol; 2018 Apr; 102(7):3159-3171. PubMed ID: 29468297 [TBL] [Abstract][Full Text] [Related]
3. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Hattori H; Yakushi T; Matsutani M; Moonmangmee D; Toyama H; Adachi O; Matsushita K Appl Microbiol Biotechnol; 2012 Sep; 95(6):1531-40. PubMed ID: 22434571 [TBL] [Abstract][Full Text] [Related]
4. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule. Xu Y; Chi P; Lv J; Bilal M; Cheng H Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129740. PubMed ID: 32956752 [TBL] [Abstract][Full Text] [Related]
5. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Hölscher T; Görisch H J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032 [TBL] [Abstract][Full Text] [Related]
6. The first in-depth exploration of the genome of the engineered bacterium, Gluconobacter thailandicus. Liu X; Ali A; Liu C; Liu Y; Zhang P Biotechnol Appl Biochem; 2022 Jun; 69(3):1190-1198. PubMed ID: 34009642 [TBL] [Abstract][Full Text] [Related]
7. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858 [TBL] [Abstract][Full Text] [Related]
8. Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii. Soemphol W; Adachi O; Matsushita K; Toyama H Biosci Biotechnol Biochem; 2008 Mar; 72(3):842-50. PubMed ID: 18323643 [TBL] [Abstract][Full Text] [Related]
9. Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Matsutani M; Yakushi T Appl Microbiol Biotechnol; 2018 Nov; 102(22):9531-9540. PubMed ID: 30218379 [TBL] [Abstract][Full Text] [Related]
10. Turbe-Doan A; Record E; Lombard V; Kumar R; Levasseur A; Henrissat B; Garron ML Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604773 [TBL] [Abstract][Full Text] [Related]
11. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes. Aquino Neto S; Hickey DP; Milton RD; De Andrade AR; Minteer SD Biosens Bioelectron; 2015 Oct; 72():247-54. PubMed ID: 25988787 [TBL] [Abstract][Full Text] [Related]
12. Major aldehyde dehydrogenase AldFGH of Gluconacetobacter diazotrophicus is independent of pyrroloquinoline quinone but dependent on molybdopterin for acetic acid fermentation. Miah R; Nina S; Murate T; Kataoka N; Matsutani M; Matsushita K; Yakushi T Appl Microbiol Biotechnol; 2021 Mar; 105(6):2341-2350. PubMed ID: 33591385 [TBL] [Abstract][Full Text] [Related]
13. Crystal Structure of the Catalytic and Cytochrome Takeda K; Ishida T; Yoshida M; Samejima M; Ohno H; Igarashi K; Nakamura N Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604769 [TBL] [Abstract][Full Text] [Related]
14. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species. Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670 [TBL] [Abstract][Full Text] [Related]
15. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus. Kataoka N; Naoki K; Ano Y; Matsushita K; Yakushi T Appl Microbiol Biotechnol; 2022 Dec; 106(23):7751-7761. PubMed ID: 36271931 [TBL] [Abstract][Full Text] [Related]
16. Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. Yang XP; Zhong GF; Lin JP; Mao DB; Wei DZ J Ind Microbiol Biotechnol; 2010 Jun; 37(6):575-80. PubMed ID: 20213113 [TBL] [Abstract][Full Text] [Related]
17. Structure of the pyrroloquinoline quinone radical in quinoprotein ethanol dehydrogenase. Kay CW; Mennenga B; Görisch H; Bittl R J Biol Chem; 2006 Jan; 281(3):1470-6. PubMed ID: 16267040 [TBL] [Abstract][Full Text] [Related]
18. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922 [TBL] [Abstract][Full Text] [Related]
19. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Liu D; Ke X; Hu ZC; Zheng YG Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020 [TBL] [Abstract][Full Text] [Related]
20. Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase. Takeda K; Ishida T; Igarashi K; Samejima M; Nakamura N; Ohno H Biosci Biotechnol Biochem; 2014; 78(7):1195-8. PubMed ID: 25229857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]