These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 33686428)

  • 21. Production of biofuels from synthesis gas using microbial catalysts.
    Tirado-Acevedo O; Chinn MS; Grunden AM
    Adv Appl Microbiol; 2010; 70():57-92. PubMed ID: 20359454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.
    Islam ZU; Zhisheng Y; Hassan el B; Dongdong C; Hongxun Z
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1557-79. PubMed ID: 26433384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass.
    Steen EJ; Kang Y; Bokinsky G; Hu Z; Schirmer A; McClure A; Del Cardayre SB; Keasling JD
    Nature; 2010 Jan; 463(7280):559-62. PubMed ID: 20111002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion.
    Zhang GC; Liu JJ; Kong II; Kwak S; Jin YS
    Curr Opin Chem Biol; 2015 Dec; 29():49-57. PubMed ID: 26432418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignocellulosic biomass: Hurdles and challenges in its valorization.
    Singhvi MS; Gokhale DV
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9305-9320. PubMed ID: 31707441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering of microbial pathways for advanced biofuels production.
    Zhang F; Rodriguez S; Keasling JD
    Curr Opin Biotechnol; 2011 Dec; 22(6):775-83. PubMed ID: 21620688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain.
    Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J
    World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks.
    Dellomonaco C; Rivera C; Campbell P; Gonzalez R
    Appl Environ Microbiol; 2010 Aug; 76(15):5067-78. PubMed ID: 20525863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges.
    Adegboye MF; Ojuederie OB; Talia PM; Babalola OO
    Biotechnol Biofuels; 2021 Jan; 14(1):5. PubMed ID: 33407786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of butanol from biomass: recent advances and future prospects.
    Abo BO; Gao M; Wang Y; Wu C; Wang Q; Ma H
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20164-20182. PubMed ID: 31115808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of fuels and chemicals from renewable resources using engineered Escherichia coli.
    Zhao C; Zhang Y; Li Y
    Biotechnol Adv; 2019 Nov; 37(7):107402. PubMed ID: 31170447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel biochemical route for fuels and chemicals production from cellulosic biomass.
    Fan Z; Wu W; Hildebrand A; Kasuga T; Zhang R; Xiong X
    PLoS One; 2012; 7(2):e31693. PubMed ID: 22384058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactobacillus casei as a biocatalyst for biofuel production.
    Vinay-Lara E; Wang S; Bai L; Phrommao E; Broadbent JR; Steele JL
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1205-13. PubMed ID: 27312380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
    Clomburg JM; Gonzalez R
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):419-34. PubMed ID: 20143230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products.
    Joyce BL; Stewart CN
    Biotechnol Adv; 2012; 30(5):1011-22. PubMed ID: 21856404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass.
    Edwards MC; Henriksen ED; Yomano LP; Gardner BC; Sharma LN; Ingram LO; Doran Peterson J
    Appl Environ Microbiol; 2011 Aug; 77(15):5184-91. PubMed ID: 21666025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels.
    Joshi A; Verma KK; D Rajput V; Minkina T; Arora J
    Bioengineered; 2022 Apr; 13(4):8135-8163. PubMed ID: 35297313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.
    Yang X; Xu M; Yang ST
    Metab Eng; 2015 Nov; 32():39-48. PubMed ID: 26365585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging nonmodel eukaryotes for biofuel production.
    Hu L; Qiu H; Huang L; Zhang F; Tran VG; Yuan J; He N; Cao M
    Curr Opin Biotechnol; 2023 Dec; 84():103015. PubMed ID: 37913603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.