These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33686478)

  • 1. Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications.
    Karimi S; Mojaddam M; Majidi S; Mehrdel P; Farré-Lladós J; Casals-Terré J
    Anal Bioanal Chem; 2021 May; 413(11):2867-2878. PubMed ID: 33686478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural design of microfluidic channels for blood plasma separation.
    Zhang J; Wei X; Xue X; Jiang Z
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7419-26. PubMed ID: 25942803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood plasma separation in elevated dimension T-shaped microchannel.
    Tripathi S; Prabhakar A; Kumar N; Singh SG; Agrawal A
    Biomed Microdevices; 2013 Jun; 15(3):415-25. PubMed ID: 23355067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Volume Microfluidic Cell Sorting for Biomedical Applications.
    Warkiani ME; Wu L; Tay AK; Han J
    Annu Rev Biomed Eng; 2015; 17():1-34. PubMed ID: 26194427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new on-chip whole blood/plasma separator driven by asymmetric capillary forces.
    Lee KK; Ahn CH
    Lab Chip; 2013 Aug; 13(16):3261-7. PubMed ID: 23793507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anti-clogging method for improving the performance and lifespan of blood plasma separation devices in real-time and continuous microfluidic systems.
    Kang DH; Kim K; Kim YJ
    Sci Rep; 2018 Nov; 8(1):17015. PubMed ID: 30451905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Microfluidic Paper-Based Analytical Devices toward High-Throughput Screening.
    Boobphahom S; Ly MN; Soum V; Pyun N; Kwon OS; Rodthongkum N; Shin K
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32605281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wicking microfluidic approach to separate blood plasma from whole blood to facilitate downstream assays.
    Bandara GC; Unitan LJ; Kremer MH; Shellhammer OT; Bracha S; Remcho VT
    Anal Bioanal Chem; 2021 Jul; 413(17):4511-4520. PubMed ID: 34046699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing.
    Karimi S; Mehrdel P; Farré-Lladós J; Casals-Terré J
    Lab Chip; 2019 Oct; 19(19):3249-3260. PubMed ID: 31478036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing.
    Madadi H; Casals-Terré J; Mohammadi M
    Biofabrication; 2015 May; 7(2):025007. PubMed ID: 26000798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of cell lysis events on a microfluidic device for high-throughput single cell analysis.
    Hargis AD; Alarie JP; Ramsey JM
    Electrophoresis; 2011 Nov; 32(22):3172-9. PubMed ID: 22025127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A smart pipette for equipment-free separation and delivery of plasma for on-site whole blood analysis.
    Im SB; Kim SC; Shim JS
    Anal Bioanal Chem; 2016 Feb; 408(5):1391-7. PubMed ID: 26718913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossed flow microfluidics for high throughput screening of bioactive chemical-cell interactions.
    Tong Z; Ivask A; Guo K; McCormick S; Lombi E; Priest C; Voelcker NH
    Lab Chip; 2017 Jan; 17(3):501-510. PubMed ID: 28074962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry.
    Jagannadh VK; Bhat BP; Nirupa Julius LA; Gorthi SS
    Anal Bioanal Chem; 2016 Mar; 408(7):1909-16. PubMed ID: 26781098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.