These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33686484)

  • 1. Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure.
    Botchway SW; Farooq S; Sajid A; Robinson IK; Yusuf M
    Chromosome Res; 2021 Mar; 29(1):19-36. PubMed ID: 33686484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila.
    Strukov YG; Sural TH; Kuroda MI; Sedat JW
    PLoS Biol; 2011 Jan; 9(1):e1000574. PubMed ID: 21264350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy.
    Mora-Bermúdez F; Ellenberg J
    Methods; 2007 Feb; 41(2):158-67. PubMed ID: 17189858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-resolution microscopy to decipher multi-molecular assemblies.
    Sieben C; Douglass KM; Guichard P; Manley S
    Curr Opin Struct Biol; 2018 Apr; 49():169-176. PubMed ID: 29621666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying nuclear wide chromatin compaction by phasor analysis of histone Förster resonance energy transfer (FRET) in frequency domain fluorescence lifetime imaging microscopy (FLIM) data.
    Liang Z; Lou J; Scipioni L; Gratton E; Hinde E
    Data Brief; 2020 Jun; 30():105401. PubMed ID: 32300614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution microscopy of genome organization.
    Shim SH
    Genes Genomics; 2021 Mar; 43(3):281-287. PubMed ID: 33630271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes.
    Flors C; Earnshaw WC
    Curr Opin Chem Biol; 2011 Dec; 15(6):838-44. PubMed ID: 22098720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Multicolor FISH with Fluorescence Lifetime Imaging for Chromosomal Identification and Chromosomal Sub Structure Investigation.
    Bhartiya A; Robinson I; Yusuf M; Botchway SW
    Front Mol Biosci; 2021; 8():631774. PubMed ID: 33816553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes.
    Llères D; Bailly AP; Perrin A; Norman DG; Xirodimas DP; Feil R
    Cell Rep; 2017 Feb; 18(7):1791-1803. PubMed ID: 28199849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Micromanipulation and Super-Resolution Imaging Resolve Nanodomains Underlying Chromatin Folding in Mitotic Chromosomes.
    Wang J; Hu C; Chen X; Li Y; Sun J; Czajkowsky DM; Shao Z
    ACS Nano; 2022 May; 16(5):8030-8039. PubMed ID: 35485433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasor-assisted nanoscopy reveals differences in the spatial organization of major nuclear lamina proteins.
    Figueiras E; Silvestre OF; Ihalainen TO; Nieder JB
    Biochim Biophys Acta Mol Cell Res; 2019 Dec; 1866(12):118530. PubMed ID: 31415840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium ions function as a booster of chromosome condensation.
    Phengchat R; Takata H; Morii K; Inada N; Murakoshi H; Uchiyama S; Fukui K
    Sci Rep; 2016 Dec; 6():38281. PubMed ID: 27910894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic chromosome organization: General rules meet species-specific variability.
    Beseda T; Cápal P; Kubalová I; Schubert V; Doležel J; Šimková H
    Comput Struct Biotechnol J; 2020; 18():1311-1319. PubMed ID: 32612754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes.
    Kubalová I; Němečková A; Weisshart K; Hřibová E; Schubert V
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent innovations in fluorescence lifetime imaging microscopy for biology and medicine.
    Datta R; Gillette A; Stefely M; Skala MC
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34247457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging.
    Spagnol ST; Dahl KN
    PLoS One; 2016; 11(1):e0146244. PubMed ID: 26765322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes.
    Nandi S; Caicedo K; Cognet L
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifetime super-resolution optical fluctuation imaging.
    Zeng Z; Ma J; Chen X; Xu C
    J Microsc; 2019 May; 274(2):87-91. PubMed ID: 30734939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.