These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33686746)

  • 1. Ultra-High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage.
    Wan Y; Song K; Chen W; Qin C; Zhang X; Zhang J; Dai H; Hu Z; Yan P; Liu C; Sun S; Chou SL; Shen C
    Angew Chem Int Ed Engl; 2021 May; 60(20):11481-11486. PubMed ID: 33686746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic interface and structural engineering for high initial coulombic efficiency and stable sodium storage in metal sulfides.
    Ma C; Fu Z; Fan Y; Li H; Ma Z; Jiang W; Han G; Ben H; Xiong HC
    Chem Sci; 2024 Jun; 15(23):8966-8973. PubMed ID: 38873077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency.
    Xiang Y; Xu L; Yang L; Ye Y; Ge Z; Wu J; Deng W; Zou G; Hou H; Ji X
    Nanomicro Lett; 2022 Jun; 14(1):136. PubMed ID: 35713745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscaled Na
    Wan H; Mwizerwa JP; Qi X; Xu X; Li H; Zhang Q; Cai L; Hu YS; Yao X
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12300-12304. PubMed ID: 29608273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries.
    Sun Y; Hou R; Xu S; Zhou H; Guo S
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202318960. PubMed ID: 38196292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SnO
    Cheng Y; Wang S; Zhou L; Chang L; Liu W; Yin D; Yi Z; Wang L
    Small; 2020 Jul; 16(26):e2000681. PubMed ID: 32495487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Engineering of Fe
    Song P; Yang J; Wang C; Wang T; Gao H; Wang G; Li J
    Nanomicro Lett; 2023 Apr; 15(1):118. PubMed ID: 37121953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic-Sulfide-Containing Potassium-Ion Batteries.
    Xie J; Li X; Lai H; Zhao Z; Li J; Zhang W; Xie W; Liu Y; Mai W
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14740-14747. PubMed ID: 31496040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Surface-Area Nitrogen-Doped Carbon Submicrospheres as High-Coulombic-Efficiency and High-Capacity Anodes for Practical Sodium-Ion Batteries.
    Tao H; Li S; Zhao Z; He Z; Wang K; Jiang K; Hu H
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28673-28682. PubMed ID: 38780466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency.
    Guo R; Liu X; Wen B; Liu F; Meng J; Wu P; Wu J; Li Q; Mai L
    Nanomicro Lett; 2020 Jul; 12(1):148. PubMed ID: 34138141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-engineering artificial solid electrolyte interphase for hard carbon anodes for superior sodium storage performance.
    Shi L; Sun Y; Liu W; Zhao F; Liu R; Dong C; Cheng G; Ding J
    Chem Commun (Camb); 2023 Oct; 59(85):12723-12726. PubMed ID: 37798956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance.
    Sun Y; Wang H; Wei W; Zheng Y; Tao L; Wang Y; Huang M; Shi J; Shi ZC; Mitlin D
    ACS Nano; 2021 Jan; 15(1):1652-1665. PubMed ID: 33369384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries.
    Ma R; Fan L; Chen S; Wei Z; Yang Y; Yang H; Qin Y; Lu B
    ACS Appl Mater Interfaces; 2018 May; 10(18):15751-15759. PubMed ID: 29664614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium Hexafluorophosphate Additive Enables Stable Lithium-Sulfur Batteries.
    Li J; Liu S; Cui Y; Zhang S; Wu X; Xiang J; Li M; Wang X; Xia X; Gu C; Tu J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56017-56026. PubMed ID: 33270437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries.
    Liu Z; Wang J; Jia X; Li W; Zhang Q; Fan L; Ding H; Yang H; Yu X; Li X; Lu B
    ACS Nano; 2019 Sep; 13(9):10631-10642. PubMed ID: 31491083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti
    Guo X; Zhang W; Zhang J; Zhou D; Tang X; Xu X; Li B; Liu H; Wang G
    ACS Nano; 2020 Mar; 14(3):3651-3659. PubMed ID: 32150388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping.
    Ning G; Ma X; Zhu X; Cao Y; Sun Y; Qi C; Fan Z; Li Y; Zhang X; Lan X; Gao J
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15950-8. PubMed ID: 25188430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Doped Modified Graphene/Fe
    Chen Y; Guo Z; Jian B; Zheng C; Zhang H
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.