These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 33686845)
1. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks. Yi F; Park S; Moon I J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845 [TBL] [Abstract][Full Text] [Related]
2. Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network. Lin YH; Liao KY; Sung KB J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33188571 [TBL] [Abstract][Full Text] [Related]
3. Automated red blood cells extraction from holographic images using fully convolutional neural networks. Yi F; Moon I; Javidi B Biomed Opt Express; 2017 Oct; 8(10):4466-4479. PubMed ID: 29082078 [TBL] [Abstract][Full Text] [Related]
4. A practical criterion for focusing of unstained cell samples using a digital holographic microscope. Malik R; Sharma P; Poulose S; Ahlawat S; Khare K J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy. Yi F; Moon I; Lee YH J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613 [TBL] [Abstract][Full Text] [Related]
6. Movies of cellular and sub-cellular motion by digital holographic microscopy. Mann CJ; Yu L; Kim MK Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319 [TBL] [Abstract][Full Text] [Related]
7. Quantitative phase imaging of living red blood cells combining digital holographic microscopy and deep learning. Zhao J; Liu L; Wang T; Zhang J; Wang X; Du X; Hao R; Liu J; Liu Y; Liu Y J Biophotonics; 2023 Oct; 16(10):e202300090. PubMed ID: 37321984 [TBL] [Abstract][Full Text] [Related]
8. Towards real-time photorealistic 3D holography with deep neural networks. Shi L; Li B; Kim C; Kellnhofer P; Matusik W Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557 [TBL] [Abstract][Full Text] [Related]
9. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620 [TBL] [Abstract][Full Text] [Related]
10. On-chip label-free cell classification based directly on off-axis holograms and spatial-frequency-invariant deep learning. Dudaie M; Barnea I; Nissim N; Shaked NT Sci Rep; 2023 Jul; 13(1):12370. PubMed ID: 37524884 [TBL] [Abstract][Full Text] [Related]
11. High space-bandwidth in quantitative phase imaging using partially spatially coherent digital holographic microscopy and a deep neural network. Butola A; Kanade SR; Bhatt S; Dubey VK; Kumar A; Ahmad A; Prasad DK; Senthilkumaran P; Ahluwalia BS; Mehta DS Opt Express; 2020 Nov; 28(24):36229-36244. PubMed ID: 33379722 [TBL] [Abstract][Full Text] [Related]
12. Deep transfer learning-based hologram classification for molecular diagnostics. Kim SJ; Wang C; Zhao B; Im H; Min J; Choi HJ; Tadros J; Choi NR; Castro CM; Weissleder R; Lee H; Lee K Sci Rep; 2018 Nov; 8(1):17003. PubMed ID: 30451953 [TBL] [Abstract][Full Text] [Related]
13. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. Mölder A; Sebesta M; Gustafsson M; Gisselson L; Wingren AG; Alm K J Microsc; 2008 Nov; 232(2):240-7. PubMed ID: 19017223 [TBL] [Abstract][Full Text] [Related]
14. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. Xu M; Papageorgiou DP; Abidi SZ; Dao M; Zhao H; Karniadakis GE PLoS Comput Biol; 2017 Oct; 13(10):e1005746. PubMed ID: 29049291 [TBL] [Abstract][Full Text] [Related]
15. High-resolution lensless holographic microscopy using a physics-aware deep network. Galande AS; Thapa V; Vijay A; John R J Biomed Opt; 2024 Oct; 29(10):106502. PubMed ID: 39381079 [TBL] [Abstract][Full Text] [Related]
16. Red blood cell classification in lensless single random phase encoding using convolutional neural networks. O'Connor T; Hawxhurst C; Shor LM; Javidi B Opt Express; 2020 Oct; 28(22):33504-33515. PubMed ID: 33115011 [TBL] [Abstract][Full Text] [Related]
17. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy. Kim Y; Kim J; Seo E; Lee SJ Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327 [TBL] [Abstract][Full Text] [Related]
18. Pixel super-resolution for lens-free holographic microscopy using deep learning neural networks. Luo Z; Yurt A; Stahl R; Lambrechts A; Reumers V; Braeken D; Lagae L Opt Express; 2019 May; 27(10):13581-13595. PubMed ID: 31163820 [TBL] [Abstract][Full Text] [Related]
19. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938 [TBL] [Abstract][Full Text] [Related]
20. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells. Moon I; Javidi B; Yi F; Boss D; Marquet P Opt Express; 2012 Apr; 20(9):10295-309. PubMed ID: 22535119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]