BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33686924)

  • 1. Batch fermentation kinetics of acetoin produced by
    Xu H; Tian Y; Wang S; Zhu K; Zhu L; He Q; Li W; Liu J
    Prep Biochem Biotechnol; 2021; 51(10):1004-1007. PubMed ID: 33686924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.
    Dai JY; Ma LH; Wang ZF; Guan WT; Xiu ZL
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):423-429. PubMed ID: 27878591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fermentation medium for acetoin production by Bacillus subtilis SF4-3 using statistical methods.
    Tian Y; Fan Y; Zhao X; Zhang J; Yang L; Liu J
    Prep Biochem Biotechnol; 2014; 44(5):529-43. PubMed ID: 24328672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141.
    Dai J; Wang Z; Xiu ZL
    Bioprocess Biosyst Eng; 2019 Mar; 42(3):475-483. PubMed ID: 30523447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy.
    Zhu BF; Xu Y
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruiting a Phosphite Dehydrogenase/Formamidase-Driven Antimicrobial Contamination System in
    Guo ZW; Ou XY; Liang S; Gao HF; Zhang LY; Zong MH; Lou WY
    ACS Synth Biol; 2020 Sep; 9(9):2537-2545. PubMed ID: 32786356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.
    Xu Y; Jiang Y; Li X; Sun B; Teng C; Yang R; Xiong K; Fan G; Wang W
    J Agric Food Chem; 2018 Mar; 66(12):3179-3187. PubMed ID: 29512378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.
    Toya Y; Hirasawa T; Ishikawa S; Chumsakul O; Morimoto T; Liu S; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    Biosci Biotechnol Biochem; 2015; 79(12):2073-80. PubMed ID: 26120821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach.
    Zhu BF; Xu Y; Fan WL
    J Ind Microbiol Biotechnol; 2010 Feb; 37(2):179-86. PubMed ID: 19904566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis.
    Zhang X; Bao T; Rao Z; Yang T; Xu Z; Yang S; Li H
    PLoS One; 2014; 9(3):e91187. PubMed ID: 24608678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three distinct phases of isoprene formation during growth and sporulation of Bacillus subtilis.
    Wagner WP; Nemecek-Marshall M; Fall R
    J Bacteriol; 1999 Aug; 181(15):4700-3. PubMed ID: 10419976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.