BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33687044)

  • 1. Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity.
    Nandi P; Rawat A; Ahammed R; Jena N; De Sarkar A
    Nanoscale; 2021 Mar; 13(10):5460-5478. PubMed ID: 33687044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.
    Dong L; Lou J; Shenoy VB
    ACS Nano; 2017 Aug; 11(8):8242-8248. PubMed ID: 28700210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus 2D titanium nitride halide TiNX
    Shi X; Yin H; Jiang S; Chen W; Zheng GP; Ren F; Wang B; Zhao G; Liu B
    Phys Chem Chem Phys; 2021 Feb; 23(5):3637-3645. PubMed ID: 33524094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X ≠ Y, X/Y = Cl, Br, I) monolayers.
    Yang Q; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Dec; 25(1):274-285. PubMed ID: 36475497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy in colossal piezoelectricity, giant Rashba effect and ultrahigh carrier mobility in Janus structures of quintuple Bi
    Tripathy N; De Sarkar A
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37167999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers.
    Cui Y; Peng L; Sun L; Li M; Zhang X; Huang Y
    J Phys Condens Matter; 2020 Feb; 32(8):08LT01. PubMed ID: 31675733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X
    Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh mechanical flexibility induced superior piezoelectricity of InSeBr-type 2D Janus materials.
    Shi X; Jiang S; Han X; Wei M; Wang B; Zhao G; Zheng GP; Yin H
    Phys Chem Chem Phys; 2022 Apr; 24(14):8371-8377. PubMed ID: 35332903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tweaking the Physics of Interfaces between Monolayers of Buckled Cadmium Sulfide for a Superhigh Piezoelectricity, Excitonic Solar Cell Efficiency, and Thermoelectricity.
    Mohanta MK; Sarkar A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18123-18137. PubMed ID: 32223217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In
    Xue F; Zhang J; Hu W; Hsu WT; Han A; Leung SF; Huang JK; Wan Y; Liu S; Zhang J; He JH; Chang WH; Wang ZL; Zhang X; Li LJ
    ACS Nano; 2018 May; 12(5):4976-4983. PubMed ID: 29694024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigations of novel Janus Pb
    Zhang F; Qiu J; Guo H; Wu L; Zhu B; Zheng K; Li H; Wang Z; Chen X; Yu J
    Nanoscale; 2021 Oct; 13(37):15611-15623. PubMed ID: 34596184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicted Janus SnSSe monolayer: a comprehensive first-principles study.
    Guo SD; Guo XS; Han RY; Deng Y
    Phys Chem Chem Phys; 2019 Nov; 21(44):24620-24628. PubMed ID: 31670329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators.
    Khan H; Mahmood N; Zavabeti A; Elbourne A; Rahman MA; Zhang BY; Krishnamurthi V; Atkin P; Ghasemian MB; Yang J; Zheng G; Ravindran AR; Walia S; Wang L; Russo SP; Daeneke T; Li Y; Kalantar-Zadeh K
    Nat Commun; 2020 Jul; 11(1):3449. PubMed ID: 32651367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX
    Noor-A-Alam M; Nolan M
    Nanoscale; 2022 Aug; 14(32):11676-11683. PubMed ID: 35912821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coexistence of high piezoelectricity and superior optical absorption in Janus Bi
    Cao SH; Zhang T; Geng HY; Chen XR
    Phys Chem Chem Phys; 2024 Jan; 26(5):4629-4642. PubMed ID: 38251770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional Janus Transition Metal Oxides and Chalcogenides: Multifunctional Properties for Photocatalysts, Electronics, and Energy Conversion.
    Chen W; Hou X; Shi X; Pan H
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35289-35295. PubMed ID: 30238747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rashba spin-splitting in Janus SnXY/WXY (X, Y = S, Se, Te; X ≠ Y) heterostructures.
    Bhat BD
    J Phys Condens Matter; 2023 Jul; 35(43):. PubMed ID: 37467762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced out-of-plane electromechanical response of Janus ZrSeO.
    Pham TH; Ullah H; Shafique A; Kim HJ; Shin YH
    Phys Chem Chem Phys; 2021 Aug; 23(30):16289-16295. PubMed ID: 34312641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides.
    Shi W; Wang Z
    J Phys Condens Matter; 2018 May; 30(21):215301. PubMed ID: 29638217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.