BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 33687193)

  • 1. Small-Molecule Targeted Aβ
    Mei J; Yang H; Sun B; Liu C; Ai H
    ACS Chem Neurosci; 2021 Apr; 12(7):1197-1209. PubMed ID: 33687193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds.
    Dong M; Zhao W; Hu D; Ai H; Kang B
    ACS Chem Neurosci; 2017 Jul; 8(7):1577-1588. PubMed ID: 28406293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Disassembly Mechanisms of Sigmoid Aβ
    Xing X; Liu C; Ali A; Kang B; Li P; Ai H
    ACS Chem Neurosci; 2020 Jan; 11(1):45-56. PubMed ID: 31697060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
    Rosenman DJ; Connors CR; Chen W; Wang C; García AE
    J Mol Biol; 2013 Sep; 425(18):3338-59. PubMed ID: 23811057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution NMR studies of Aβ monomer dynamics.
    Wang C
    Protein Pept Lett; 2011 Apr; 18(4):354-61. PubMed ID: 21222639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ
    Saini RK; Shuaib S; Goyal D; Goyal B
    J Biomol Struct Dyn; 2019 Aug; 37(12):3183-3197. PubMed ID: 30582723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease.
    Heller GT; Aprile FA; Michaels TCT; Limbocker R; Perni M; Ruggeri FS; Mannini B; Löhr T; Bonomi M; Camilloni C; De Simone A; Felli IC; Pierattelli R; Knowles TPJ; Dobson CM; Vendruscolo M
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33148639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β
    Shuaib S; Saini RK; Goyal D; Goyal B
    J Biomol Struct Dyn; 2020 Feb; 38(3):708-721. PubMed ID: 30821624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Norepinephrine Inhibits Alzheimer's Amyloid-β Peptide Aggregation and Destabilizes Amyloid-β Protofibrils: A Molecular Dynamics Simulation Study.
    Zou Y; Qian Z; Chen Y; Qian H; Wei G; Zhang Q
    ACS Chem Neurosci; 2019 Mar; 10(3):1585-1594. PubMed ID: 30605312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structures of the E22Δ mutant-type amyloid-β alloforms and the impact of E22Δ mutation on the structures of the wild-type amyloid-β alloforms.
    Coskuner O; Wise-Scira O; Perry G; Kitahara T
    ACS Chem Neurosci; 2013 Feb; 4(2):310-20. PubMed ID: 23421682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease.
    Ghosh P; Kumar A; Datta B; Rangachari V
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S24. PubMed ID: 20946608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation of Aβ40/42 chains in the presence of cyclic neuropeptides investigated by molecular dynamics simulations.
    Wu M; Dorosh L; Schmitt-Ulms G; Wille H; Stepanova M
    PLoS Comput Biol; 2021 Mar; 17(3):e1008771. PubMed ID: 33711010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data.
    Kocis P; Tolar M; Yu J; Sinko W; Ray S; Blennow K; Fillit H; Hey JA
    CNS Drugs; 2017 Jun; 31(6):495-509. PubMed ID: 28435985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity Mechanism of Aβ42 Oligomer in the Binding between the GABA
    Mei J; Yang H; Ahmad S; Ma X; Xu W; Gao W; Li Y; Wang C; Ai H
    ACS Chem Neurosci; 2022 Jul; 13(13):2048-2059. PubMed ID: 35737468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coexistence of an equal amount of Alzheimer's amyloid-β 40 and 42 forms structurally stable and toxic oligomers through a distinct pathway.
    Chang YJ; Chen YR
    FEBS J; 2014 Jun; 281(11):2674-87. PubMed ID: 24720730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of 12-Crown-4 with Alzheimer's Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations.
    Agrawal N; Skelton AA
    Mol Pharm; 2018 Jan; 15(1):289-299. PubMed ID: 29200307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and Identification of an Endogenous Metabolite of Tramiprosate and Its Prodrug ALZ-801 that Inhibits Beta Amyloid Oligomer Formation in the Human Brain.
    Hey JA; Kocis P; Hort J; Abushakra S; Power A; Vyhnálek M; Yu JY; Tolar M
    CNS Drugs; 2018 Sep; 32(9):849-861. PubMed ID: 30076539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the inter- and intra-peptide salt-bridge mechanism of Aβ23-28 oligomer interaction with small molecules: QM/MM method.
    Boopathi S; Kolandaivel P
    Mol Biosyst; 2015 Jul; 11(7):2031-41. PubMed ID: 25973904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity?
    Zheng X; Wu C; Liu D; Li H; Bitan G; Shea JE; Bowers MT
    J Phys Chem B; 2016 Mar; 120(8):1615-23. PubMed ID: 26439281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.