These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33687248)
21. Local thermal energy as a structural indicator in glasses. Zylberg J; Lerner E; Bar-Sinai Y; Bouchbinder E Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7289-7294. PubMed ID: 28655846 [TBL] [Abstract][Full Text] [Related]
22. Vibrational Modes and Dynamic Heterogeneity in a Near-Equilibrium 2D Glass of Colloidal Kites. Zong Y; Chen K; Mason TG; Zhao K Phys Rev Lett; 2018 Nov; 121(22):228003. PubMed ID: 30547612 [TBL] [Abstract][Full Text] [Related]
23. Sound attenuation in finite-temperature stable glasses. Wang L; Szamel G; Flenner E Soft Matter; 2020 Aug; 16(30):7165-7171. PubMed ID: 32671375 [TBL] [Abstract][Full Text] [Related]
24. Thermal origin of quasilocalized excitations in glasses. Ji W; de Geus TWJ; Popović M; Agoritsas E; Wyart M Phys Rev E; 2020 Dec; 102(6-1):062110. PubMed ID: 33466080 [TBL] [Abstract][Full Text] [Related]
25. Mechanical disorder of sticky-sphere glasses. II. Thermomechanical inannealability. González-López K; Shivam M; Zheng Y; Ciamarra MP; Lerner E Phys Rev E; 2021 Feb; 103(2-1):022606. PubMed ID: 33735957 [TBL] [Abstract][Full Text] [Related]
29. Extracting the properties of quasilocalized modes in computer glasses: Long-range continuum fields, contour integrals, and boundary effects. Moriel A; Lubomirsky Y; Lerner E; Bouchbinder E Phys Rev E; 2020 Sep; 102(3-1):033008. PubMed ID: 33075966 [TBL] [Abstract][Full Text] [Related]
30. Energy transport in glasses. Flenner E; Wang L; Szamel G Soft Matter; 2020 Jan; 16(3):775-783. PubMed ID: 31830187 [TBL] [Abstract][Full Text] [Related]
31. Anomalous vibrational properties in the continuum limit of glasses. Shimada M; Mizuno H; Ikeda A Phys Rev E; 2018 Feb; 97(2-1):022609. PubMed ID: 29548203 [TBL] [Abstract][Full Text] [Related]
32. Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions. González-López K; Shivam M; Zheng Y; Ciamarra MP; Lerner E Phys Rev E; 2021 Feb; 103(2-1):022605. PubMed ID: 33736046 [TBL] [Abstract][Full Text] [Related]
34. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses. Lerner E; Bouchbinder E Phys Rev E; 2017 Aug; 96(2-1):020104. PubMed ID: 28950500 [TBL] [Abstract][Full Text] [Related]
35. Force distribution affects vibrational properties in hard-sphere glasses. DeGiuli E; Lerner E; Brito C; Wyart M Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17054-9. PubMed ID: 25406326 [TBL] [Abstract][Full Text] [Related]
36. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale. Monaco G; Mossa S Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16907-12. PubMed ID: 19805115 [TBL] [Abstract][Full Text] [Related]
37. Probing the glass transition from structural and vibrational properties of zero-temperature glasses. Wang L; Xu N Phys Rev Lett; 2014 Feb; 112(5):055701. PubMed ID: 24580613 [TBL] [Abstract][Full Text] [Related]
38. Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses. Yang J; Wang YJ; Ma E; Zaccone A; Dai LH; Jiang MQ Phys Rev Lett; 2019 Jan; 122(1):015501. PubMed ID: 31012708 [TBL] [Abstract][Full Text] [Related]
39. Sound attenuation in stable glasses. Wang L; Berthier L; Flenner E; Guan P; Szamel G Soft Matter; 2019 Sep; 15(35):7018-7025. PubMed ID: 31433423 [TBL] [Abstract][Full Text] [Related]