These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33687282)

  • 1. Finite element analysis of lower limb exoskeleton during sit-to-stand transition.
    K U; R V
    Comput Methods Biomech Biomed Engin; 2021 Oct; 24(13):1419-1425. PubMed ID: 33687282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction and simulation mechanical analysis of dynamic knee joint finite element model based on CT image].
    Chen YF; Lu C; Zhao Y; Cheng YZ; Qiao F; Qin WK; Hou CZ; Liu GW
    Zhongguo Gu Shang; 2020 May; 33(5):479-84. PubMed ID: 32452190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comfort optimization of a new type of foot mechanism for lower extremity exoskeleton].
    Luan Y; Zhang J; Qi K; Yang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):324-333. PubMed ID: 32329286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Finite Element Analysis and Biomechanical Analysis of Midfoot von Mises Stress Levels in Flatfoot, Clubfoot, and Lisfranc Joint Injury.
    Wang C; He X; Zhang Z; Lai C; Li X; Zhou Z; Ruan K
    Med Sci Monit; 2021 Aug; 27():e931969. PubMed ID: 34455415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation.
    Narayan J; Kumar Dwivedy S
    Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel stress distribution organ in the arthropod exoskeleton.
    Hecht EM; Cullinane DM; Grosse IR
    Arthropod Struct Dev; 2010 Sep; 39(5):305-9. PubMed ID: 20478397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Assistance Timing in Knee Extensor Muscle Activation During Sit-to-Stand Using a Bilateral Robotic Knee Exoskeleton.
    Choi G; Lee D; Kang I; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4879-4882. PubMed ID: 34892302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Finite element analysis of the graft stresses after anterior cruciate ligament reconstruction].
    Ren S; Shi HJ; Zhang JH; Liu ZL; Shao JY; Zhu JX; Hu XQ; Huang HS; Ao YF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Oct; 53(5):865-870. PubMed ID: 34650286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knee Exoskeleton Reduces Muscle Effort and Improves Balance During Sit-to-Stand Transitions After Stroke: A Case Study.
    Sarkisian SV; Gunnell AJ; Bo Foreman K; Lenzi T
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium Alloy Gamma Nail versus Biodegradable Magnesium Alloy Bionic Gamma Nail for Treating Intertrochanteric Fractures: A Finite Element Analysis.
    Li M; Zhao K; Ding K; Cui YW; Cheng XD; Yang WJ; Hou ZY; Zhang YZ; Chen W; Hu P; Zhu YB
    Orthop Surg; 2021 Jul; 13(5):1513-1520. PubMed ID: 34075690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, analysis and verification of a knee joint oncological prosthesis finite element model.
    Zach L; Kunčická L; Růžička P; Kocich R
    Comput Biol Med; 2014 Nov; 54():53-60. PubMed ID: 25212118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three-dimensional finite element analysis of the stress distribution of bone tissue around porous titanium implant].
    Liu TS; Gao R; Wei T; Sun HQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 Jan; 54(1):35-40. PubMed ID: 30630257
    [No Abstract]   [Full Text] [Related]  

  • 19. [Finite element analysis of different diameter prosthesis ball head in artificial femoral head replacement].
    Wang XB; Panf QJ; Yu X
    Zhongguo Gu Shang; 2020 Jun; 33(6):558-63. PubMed ID: 32573163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.