These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33687498)

  • 21. Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development.
    Kouidri A; Baumann U; Okada T; Baes M; Tucker EJ; Whitford R
    BMC Plant Biol; 2018 Dec; 18(1):332. PubMed ID: 30518316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice.
    Zhao YF; Peng T; Sun HZ; Teotia S; Wen HL; Du YX; Zhang J; Li JZ; Tang GL; Xue HW; Zhao QZ
    Plant Biotechnol J; 2019 Apr; 17(4):712-723. PubMed ID: 30183128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Down-expression of TaPIN1s Increases the Tiller Number and Grain Yield in Wheat.
    Yao FQ; Li XH; Wang H; Song YN; Li ZQ; Li XG; Gao XQ; Zhang XS; Bie XM
    BMC Plant Biol; 2021 Sep; 21(1):443. PubMed ID: 34592922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light intensity-mediated auxin homeostasis in spikelets links carbohydrate metabolism enzymes with grain filling rate in rice.
    Panda D; Mohanty S; Das S; Mishra B; Baig MJ; Behera L
    Protoplasma; 2023 Jul; 260(4):1233-1251. PubMed ID: 36847862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches.
    Chang S; Chen Y; Jia S; Li Y; Liu K; Lin Z; Wang H; Chu Z; Liu J; Xi C; Zhao H; Han S; Wang Y
    PLoS Genet; 2020 Oct; 16(10):e1009157. PubMed ID: 33108367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice.
    Ueda K; Yoshimura F; Miyao A; Hirochika H; Nonomura K; Wabiko H
    Plant Physiol; 2013 Jun; 162(2):858-71. PubMed ID: 23629836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic analysis reveals the contribution of auxin on the differentially developed caryopses on primary and secondary branches in rice.
    Jia S; Chang S; Wang H; Chu Z; Xi C; Liu J; Zhao H; Han S; Wang Y
    J Plant Physiol; 2021 Jan; 256():153310. PubMed ID: 33157456
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Tong X; Wang Y; Sun A; Bello BK; Ni S; Zhang J
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30558382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis.
    Feng XL; Ni WM; Elge S; Mueller-Roeber B; Xu ZH; Xue HW
    Plant Mol Biol; 2006 May; 61(1-2):215-26. PubMed ID: 16786302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium.
    Singla B; Chugh A; Khurana JP; Khurana P
    J Exp Bot; 2006; 57(15):4059-70. PubMed ID: 17077182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning and functional characterisation of the galactolipid biosynthetic gene TaMGD in wheat grain.
    Du C; Gao H; Liu S; Ma D; Feng J; Wang C; Jiang X; Li G; Xie Y
    Plant Physiol Biochem; 2020 Sep; 154():66-74. PubMed ID: 32526612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments.
    Song Y; Wang L; Xiong L
    Planta; 2009 Feb; 229(3):577-91. PubMed ID: 19034497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice.
    Li Q; Lu L; Liu H; Bai X; Zhou X; Wu B; Yuan M; Yang L; Xing Y
    Theor Appl Genet; 2020 Aug; 133(8):2387-2399. PubMed ID: 32472264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.).
    Jiang W; Yin J; Zhang H; He Y; Shuai S; Chen S; Cao S; Li W; Ma D; Chen H
    Mol Biol Rep; 2020 May; 47(5):3885-3907. PubMed ID: 32361896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining.
    Boutrot F; Chantret N; Gautier MF
    BMC Genomics; 2008 Feb; 9():86. PubMed ID: 18291034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.).
    Guo L; Ma M; Wu L; Zhou M; Li M; Wu B; Li L; Liu X; Jing R; Chen W; Zhao H
    Plant Biotechnol J; 2022 Jan; 20(1):168-182. PubMed ID: 34510688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and expression analysis of WOX5 genes from wheat and its relatives.
    Zhao S; Jiang QT; Ma J; Zhang XW; Zhao QZ; Wang XY; Wang CS; Cao X; Lu ZX; Zheng YL; Wei YM
    Gene; 2014 Mar; 537(1):63-9. PubMed ID: 24368329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling.
    Ren Y; Huang Z; Jiang H; Wang Z; Wu F; Xiong Y; Yao J
    J Exp Bot; 2021 Apr; 72(8):2947-2964. PubMed ID: 33476364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic monitoring of TGW6 by selective autophagy during grain development in rice.
    Liu Z; Yang Q; Wu P; Li Y; Lin Y; Liu W; Guo S; Liu Y; Huang Y; Xu P; Qian Y; Xie Q
    New Phytol; 2023 Dec; 240(6):2419-2435. PubMed ID: 37743547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E; Massange-Sánchez JA; Nielsen K; Gregersen PL; Braumann I
    PLoS One; 2018; 13(12):e0209769. PubMed ID: 30592743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.