BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33687713)

  • 1. Human Blood Plasma Investigation Employing 2D UPLC-UDMS
    Silva-Costa LC; Smith BJ; Carlson PT; Souza GHMF; Martins-de-Souza D
    Methods Mol Biol; 2021; 2259():153-165. PubMed ID: 33687713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery.
    Shi T; Zhou JY; Gritsenko MA; Hossain M; Camp DG; Smith RD; Qian WJ
    Methods; 2012 Feb; 56(2):246-53. PubMed ID: 21925605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry.
    Wu SL; Choudhary G; Ramström M; Bergquist J; Hancock WS
    J Proteome Res; 2003; 2(4):383-93. PubMed ID: 12938928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of human serum by liquid chromatography-mass spectrometry: improved sample preparation and data analysis.
    Govorukhina NI; Reijmers TH; Nyangoma SO; van der Zee AG; Jansen RC; Bischoff R
    J Chromatogr A; 2006 Jul; 1120(1-2):142-50. PubMed ID: 16574134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis.
    Linke T; Doraiswamy S; Harrison EH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):273-81. PubMed ID: 17188586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundant plasma protein depletion using ammonium sulfate precipitation and Protein A affinity chromatography.
    Pringels L; Broeckx V; Boonen K; Landuyt B; Schoofs L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1089():43-59. PubMed ID: 29758408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS.
    Yang Z; Hancock WS; Chew TR; Bonilla L
    Proteomics; 2005 Aug; 5(13):3353-66. PubMed ID: 16052617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum.
    Zolotarjova N; Mrozinski P; Chen H; Martosella J
    J Chromatogr A; 2008 May; 1189(1-2):332-8. PubMed ID: 18154976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UPLC-MS(E) application in disease biomarker discovery: the discoveries in proteomics to metabolomics.
    Zhao YY; Lin RC
    Chem Biol Interact; 2014 May; 215():7-16. PubMed ID: 24631021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Linke T; Ross AC; Harrison EH
    J Chromatogr A; 2006 Aug; 1123(2):160-9. PubMed ID: 16472533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics.
    Distler U; Kuharev J; Navarro P; Levin Y; Schild H; Tenzer S
    Nat Methods; 2014 Feb; 11(2):167-70. PubMed ID: 24336358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitation of immunoaffinity column for the removal of abundant proteins from plasma in quantitative plasma proteomics.
    Ichibangase T; Moriya K; Koike K; Imai K
    Biomed Chromatogr; 2009 May; 23(5):480-7. PubMed ID: 19039805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity prefractionation for MS-based plasma proteomics.
    Pernemalm M; Lewensohn R; Lehtiö J
    Proteomics; 2009 Mar; 9(6):1420-7. PubMed ID: 19235168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free proteomics of serum.
    Govorukhina N; Horvatovich P; Bischoff R
    Methods Mol Biol; 2008; 484():67-77. PubMed ID: 18592173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Depth and Breadth of Plasma Protein Quantitation via Two-Dimensional Liquid Chromatography/Multiple Reaction Monitoring-Mass Spectrometry with Labeled Peptide Standards.
    Percy AJ; Yang J; Chambers AG; Borchers CH
    Methods Mol Biol; 2016; 1410():1-21. PubMed ID: 26867735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted proteomics of low-level proteins in human plasma by LC/MSn: using human growth hormone as a model system.
    Wu SL; Amato H; Biringer R; Choudhary G; Shieh P; Hancock WS
    J Proteome Res; 2002; 1(5):459-65. PubMed ID: 12645918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample preparation for detection of low abundance proteins in human plasma using ultra-high performance liquid chromatography coupled with highly accurate mass spectrometry.
    Seong Y; Yoo YS; Akter H; Kang MJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Aug; 1060():272-280. PubMed ID: 28649027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation.
    Raijmakers R; Heck AJ; Mohammed S
    Mol Biosyst; 2009 Sep; 5(9):992-1003. PubMed ID: 19668865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.