These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Sabuncu AC; Asmar AJ; Stacey MW; Beskok A Electrophoresis; 2015 Jul; 36(13):1499-506. PubMed ID: 25958778 [TBL] [Abstract][Full Text] [Related]
4. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Deivasigamani R; Mohd Maidin NN; Abdul Nasir NS; Abdulhameed A; Ahmad Kayani AB; Mohamed MA; Buyong MR Electrophoresis; 2023 Mar; 44(5-6):573-620. PubMed ID: 36604943 [TBL] [Abstract][Full Text] [Related]
5. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization. Turcan I; Olariu MA ACS Comb Sci; 2020 Nov; 22(11):554-578. PubMed ID: 32786320 [TBL] [Abstract][Full Text] [Related]
6. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications. Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in dielectrophoresis-based cell viability assessment. Zhang J; Song Z; Liu Q; Song Y Electrophoresis; 2020 Jun; 41(10-11):917-932. PubMed ID: 31808164 [TBL] [Abstract][Full Text] [Related]
8. High frequency dielectrophoretic response of microalgae over time. Hadady H; Wong JJ; Hiibel SR; Redelman D; Geiger EJ Electrophoresis; 2014 Dec; 35(24):3533-40. PubMed ID: 25229637 [TBL] [Abstract][Full Text] [Related]
9. A separability parameter for dielectrophoretic cell separation. Sabuncu AC; Beskok A Electrophoresis; 2013 Apr; 34(7):1051-8. PubMed ID: 23348751 [TBL] [Abstract][Full Text] [Related]
10. Using dielectrophoretic spectra to identify and separate viable yeast cells. Bunthawin S; Srichan P; Jaruwongrungsee K; Ritchie RJ Appl Microbiol Biotechnol; 2023 Dec; 107(24):7647-7655. PubMed ID: 37815615 [TBL] [Abstract][Full Text] [Related]
11. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Douglas TA; Cemazar J; Balani N; Sweeney DC; Schmelz EM; Davalos RV Electrophoresis; 2017 Jun; 38(11):1507-1514. PubMed ID: 28342274 [TBL] [Abstract][Full Text] [Related]
12. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis. Ye T; Li H; Lam KY Electrophoresis; 2015 Feb; 36(3):378-85. PubMed ID: 24981085 [TBL] [Abstract][Full Text] [Related]
14. Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning. Puttaswamy SV; Sivashankar S; Chen RJ; Chin CK; Chang HY; Liu CH Biotechnol J; 2010 Oct; 5(10):1005-15. PubMed ID: 20931598 [TBL] [Abstract][Full Text] [Related]
15. Dielectrophoretic separation of bioparticles in microdevices: a review. Jubery TZ; Srivastava SK; Dutta P Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825 [TBL] [Abstract][Full Text] [Related]
16. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells. Mustafa A; Pedone E; Marucci L; Moschou D; Lorenzo MD Electrophoresis; 2022 Feb; 43(3):501-508. PubMed ID: 34717293 [TBL] [Abstract][Full Text] [Related]
17. Device for dielectrophoretic separation and collection of nanoparticles and DNA under high conductance conditions. Song Y; Sonnenberg A; Heaney Y; Heller MJ Electrophoresis; 2015 May; 36(9-10):1107-14. PubMed ID: 25780998 [TBL] [Abstract][Full Text] [Related]
18. Rapid cell separation with minimal manipulation for autologous cell therapies. Smith AJ; O'Rorke RD; Kale A; Rimsa R; Tomlinson MJ; Kirkham J; Davies AG; Wälti C; Wood CD Sci Rep; 2017 Feb; 7():41872. PubMed ID: 28150746 [TBL] [Abstract][Full Text] [Related]
19. Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking. Gagnon Z; Gordon J; Sengupta S; Chang HC Electrophoresis; 2008 Jun; 29(11):2272-9. PubMed ID: 18548460 [TBL] [Abstract][Full Text] [Related]