These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

966 related articles for article (PubMed ID: 33687800)

  • 21. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration.
    Abdollahi Boraei SB; Nourmohammadi J; Bakhshandeh B; Dehghan MM; Gholami H; Gonzalez Z; Sanchez-Herencia AJ; Ferrari B
    Biomed Mater; 2021 Feb; 16(2):025009. PubMed ID: 33434897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-free bilayer functionalized scaffold for osteochondral tissue engineering.
    Khatami SM; Hanaee-Ahvaz H; Parivar K; Soleimani M; Abedin Dargoush S; Naderi Sohi A
    J Biosci Bioeng; 2024 Nov; 138(5):452-461. PubMed ID: 39227279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method.
    Gautam S; Dinda AK; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC
    Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.
    Liu J; Nie H; Xu Z; Niu X; Guo S; Yin J; Guo F; Li G; Wang Y; Zhang C
    PLoS One; 2014; 9(11):e111566. PubMed ID: 25389965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.
    Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous structure.
    Liu S; Zheng Y; Liu R; Tian C
    J Mater Sci Mater Med; 2020 Aug; 31(8):74. PubMed ID: 32743750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of multilayer electrospun nanofibrous scaffolds containing soluble eggshell membrane as potential dermal substitute.
    Amirsadeghi A; Khorram M; Hashemi SS
    J Biomed Mater Res A; 2021 Oct; 109(10):1812-1827. PubMed ID: 33763964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering.
    Shaltooki M; Dini G; Mehdikhani M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional nanofibrous and porous scaffolds of poly(ε-caprolactone)-chitosan blends for musculoskeletal tissue engineering.
    Pereira AL; Semitela Â; Girão AF; Completo A; Marques PAAP; Guieu S; Fernandes MHV
    J Biomed Mater Res A; 2023 Jul; 111(7):950-961. PubMed ID: 36519714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.
    Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S
    Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.