BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33687846)

  • 1. A Neighborhood-Based Global Network Model to Predict Drug-Target Interactions.
    Wang S; Li J; Wang Y; Juan L
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2017-2025. PubMed ID: 33687846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Drug-Target Interactions Over Heterogeneous Information Network.
    Su X; Hu P; Yi H; You Z; Hu L
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):562-572. PubMed ID: 36327172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring Interactions between Novel Drugs and Novel Targets via Instance-Neighborhood-Based Models.
    Shi JY; Li JX; Chen BL; Zhang Y
    Curr Protein Pept Sci; 2018; 19(5):488-497. PubMed ID: 27829347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMTF-DTI: A Nonnegative Matrix Tri-factorization Approach With Multiple Kernel Fusion for Drug-Target Interaction Prediction.
    Jamali AA; Kusalik A; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):586-594. PubMed ID: 34914594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PPDTS: Predicting potential drug-target interactions based on network similarity.
    Wang W; Wang Y; Zhang Y; Liu D; Zhang H; Wang X
    IET Syst Biol; 2022 Feb; 16(1):18-27. PubMed ID: 34783172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction.
    Li J; Wang J; Lv H; Zhang Z; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-grained selective similarity integration for drug-target interaction prediction.
    Liu B; Wang J; Sun K; Tsoumakas G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36907663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder.
    Chen P; Zheng H
    BMC Bioinformatics; 2023 Apr; 24(1):151. PubMed ID: 37069493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DASPfind: new efficient method to predict drug-target interactions.
    Ba-Alawi W; Soufan O; Essack M; Kalnis P; Bajic VB
    J Cheminform; 2016; 8():15. PubMed ID: 26985240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction.
    Wang W; Yu M; Sun B; Li J; Liu D; Zhang H; Wang X; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):143-154. PubMed ID: 38051618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.