BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 33688252)

  • 1. Identification of Hub Genes and Pathways of Triple Negative Breast Cancer by Expression Profiles Analysis.
    Li L; Huang H; Zhu M; Wu J
    Cancer Manag Res; 2021; 13():2095-2104. PubMed ID: 33688252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis.
    Ma J; Chen C; Liu S; Ji J; Wu D; Huang P; Wei D; Fan Z; Ren L
    Cancer Gene Ther; 2022 Nov; 29(11):1578-1589. PubMed ID: 35474355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining.
    Chen J; Liu C; Cen J; Liang T; Xue J; Zeng H; Zhang Z; Xu G; Yu C; Lu Z; Wang Z; Jiang J; Zhan X; Zeng J
    Medicine (Baltimore); 2020 May; 99(18):e19986. PubMed ID: 32358373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses.
    Wu J; Lv Q; Huang H; Zhu M; Meng D
    Genet Test Mol Biomarkers; 2020 Aug; 24(8):484-491. PubMed ID: 32598242
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis.
    Deng JL; Xu YH; Wang G
    Front Genet; 2019; 10():695. PubMed ID: 31428132
    [No Abstract]   [Full Text] [Related]  

  • 7. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.
    Qiu P; Guo Q; Yao Q; Chen J; Lin J
    PLoS One; 2021; 16(11):e0254283. PubMed ID: 34797837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Potential Key Genes and Pathways for Inflammatory Breast Cancer Based on GEO and TCGA Databases.
    Lv Q; Liu Y; Huang H; Zhu M; Wu J; Meng D
    Onco Targets Ther; 2020; 13():5541-5550. PubMed ID: 32606769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of CCNE1 confers a poorer prognosis in triple-negative breast cancer identified by bioinformatic analysis.
    Yuan Q; Zheng L; Liao Y; Wu G
    World J Surg Oncol; 2021 Mar; 19(1):86. PubMed ID: 33757543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Analysis of Potential Key Genes Associated With Hepatocellular Carcinoma Based on Integrated Bioinformatics Methods.
    Li Z; Lin Y; Cheng B; Zhang Q; Cai Y
    Front Genet; 2021; 12():571231. PubMed ID: 33767726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analysis of key genes in triple negative breast cancer and validation of oncogene PLK1.
    Ren Y; Deng R; Zhang Q; Li J; Han B; Ye P
    Ann Transl Med; 2020 Dec; 8(24):1637. PubMed ID: 33490149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Features of Triple Negative Breast Cancer: Microarray Evidence and Further Integrated Analysis.
    He J; Yang J; Chen W; Wu H; Yuan Z; Wang K; Li G; Sun J; Yu L
    PLoS One; 2015; 10(6):e0129842. PubMed ID: 26103053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of hub genes associated with bladder cancer using bioinformatic analyses.
    Zheng W; Zhao Y; Wang T; Zhao X; Tan Z
    Transl Cancer Res; 2022 May; 11(5):1330-1343. PubMed ID: 35706790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bioinformatics Analysis of Core Genes and Key Pathways in Myelodysplastic Syndrome].
    Wang Y; Wang YS; Hu NB; Teng GS; Zhou Y; Bai J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Jun; 30(3):804-812. PubMed ID: 35680809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of NUF2 and FAM83D as potential biomarkers in triple-negative breast cancer.
    Zhai X; Yang Z; Liu X; Dong Z; Zhou D
    PeerJ; 2020; 8():e9975. PubMed ID: 33005492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis and identification of key genes and signaling pathways in the occurrence and metastasis of cutaneous melanoma.
    Dai H; Guo L; Lin M; Cheng Z; Li J; Tang J; Huan X; Huang Y; Xu K
    PeerJ; 2020; 8():e10265. PubMed ID: 33240619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel biomarkers identified in triple-negative breast cancer through RNA-sequencing.
    Chen YL; Wang K; Xie F; Zhuo ZL; Liu C; Yang Y; Wang S; Zhao XT
    Clin Chim Acta; 2022 Jun; 531():302-308. PubMed ID: 35504321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of differentially expressed metastatic genes and their signatures to predict the overall survival of uveal melanoma patients by bioinformatics analysis.
    Zhao DD; Zhao X; Li WT
    Int J Ophthalmol; 2020; 13(7):1046-1053. PubMed ID: 32685390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.