These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33688334)

  • 1. On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America.
    Chen X; Millet DB; Singh HB; Wisthaler A; Apel EC; Atlas EL; Blake DR; Bourgeois I; Brown SS; Crounse JD; de Gouw JA; Flocke FM; Fried A; Heikes BG; Hornbrook RS; Mikoviny T; Min KE; Müller M; Neuman JA; O'Sullivan DW; Peischl J; Pfister GG; Richter D; Roberts JM; Ryerson TB; Shertz SR; Thompson CR; Treadaway V; Veres PR; Walega J; Warneke C; Washenfelder RA; Weibring P; Yuan B
    Atmos Chem Phys; 2019 Jul; 19(14):9097-9123. PubMed ID: 33688334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station.
    Selimovic V; Ketcherside D; Chaliyakunnel S; Wielgasz C; Permar W; Angot H; Millet DB; Fried A; Helmig D; Hu L
    Atmos Chem Phys; 2022; 22(21):14037-14058. PubMed ID: 37476609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraining remote oxidation capacity with ATom observations.
    Travis KR; Heald CL; Allen HM; Apel EC; Arnold SR; Blake DR; Brune WH; Chen X; Commane R; Crounse JD; Daube BC; Diskin GS; Elkins JW; Evans MJ; Hall SR; Hintsa EJ; Hornbrook RS; Kasibhatla PS; Kim MJ; Luo G; McKain K; Millet DB; Moore FL; Peischl J; Ryerson TB; Sherwen T; Thames AB; Ullmann K; Wang X; Wennberg PO; Wolfe GM; Yu F
    Atmos Chem Phys; 2020 Jul; 20(13):7753-7781. PubMed ID: 33688335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. North American acetone sources determined from tall tower measurements and inverse modeling.
    Hu L; Millet DB; Kim SY; Wells KC; Griffis TJ; Fischer EV; Helmig D; Hueber J; Curtis AJ
    Atmos Chem Phys; 2013 Mar; 13(6):3379-3392. PubMed ID: 33719355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data.
    Batterman S; Su FC; Li S; Mukherjee B; Jia C;
    Res Rep Health Eff Inst; 2014 Jun; (181):3-63. PubMed ID: 25145040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A better representation of VOC chemistry in WRF-Chem and its impact on ozone over Los Angeles.
    Zhu Q; Schwantes RH; Coggon M; Harkins C; Schnell J; He J; Pye HOT; Li M; Baker B; Moon Z; Ahmadov R; Pfannerstill EY; Place B; Wooldridge P; Schulze BC; Arata C; Bucholtz A; Seinfeld JH; Warneke C; Stockwell CE; Xu L; Zuraski K; Robinson MA; Neuman A; Veres PR; Peischl J; Brown SS; Goldstein AH; Cohen RC; McDonald BC
    Atmos Chem Phys; 2024 May; 24(9):5265-5286. PubMed ID: 39318851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ.
    Gaubert B; Emmons LK; Raeder K; Tilmes S; Miyazaki K; Arellano AF; Elguindi N; Granier C; Tang W; Barré J; Worden HM; Buchholz RR; Edwards DP; Franke P; Anderson JL; Saunois M; Schroeder J; Woo JH; Simpson IJ; Blake DR; Meinardi S; Wennberg PO; Crounse J; Teng A; Kim M; Dickerson RR; He H; Ren X; Pusede SE; Diskin GS
    Atmos Chem Phys; 2020 Dec; 20(23):14617-14647. PubMed ID: 33414818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential air toxics hot spots in truck terminals and cabs.
    Smith TJ; Davis ME; Hart JE; Blicharz A; Laden F; Garshick E;
    Res Rep Health Eff Inst; 2012 Dec; (172):5-82. PubMed ID: 23409510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year.
    Kumar V; Sinha V
    Chemosphere; 2021 Nov; 283():131184. PubMed ID: 34146869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal.
    Chen Y; Liu C; Su W; Hu Q; Zhang C; Liu H; Yin H
    Sci Total Environ; 2023 Feb; 859(Pt 1):159997. PubMed ID: 36368395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season.
    Mishra AK; Sinha V
    Environ Pollut; 2020 Dec; 267():115538. PubMed ID: 33254592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and chemical processing of volatile organic compounds in boundary layer polluted plumes: Insights from an airborne Q-PTR-MS on-board the French ATR-42 aircraft.
    Dominutti PA; Thera BTP; Colomb A; Borbon A
    Sci Total Environ; 2024 Sep; 941():173311. PubMed ID: 38782275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Volatile Organic Compounds Emitted from Airport Sources and Their Effects on Ozone Production.
    Chen M; Li S; Yun L; Xu Y; Chen D; Lin C; Qiu Z; You Y; Liu M; Luo Z; Zhang L; Cheng C; Li M
    Toxics; 2024 Mar; 12(4):. PubMed ID: 38668466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles.
    Pfannerstill EY; Arata C; Zhu Q; Schulze BC; Ward R; Woods R; Harkins C; Schwantes RH; Seinfeld JH; Bucholtz A; Cohen RC; Goldstein AH
    Science; 2024 Jun; 384(6702):1324-1329. PubMed ID: 38900887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Inversion Framework for Optimizing Non-Methane VOC Emissions Using Remote Sensing and Airborne Observations in Northeast Asia During the KORUS-AQ Field Campaign.
    Choi J; Henze DK; Cao H; Nowlan CR; González Abad G; Kwon HA; Lee HM; Oak YJ; Park RJ; Bates KH; Maasakkers JD; Wisthaler A; Weinheimer AJ
    J Geophys Res Atmos; 2022 Apr; 127(7):e2021JD035844. PubMed ID: 35865789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter.
    Yang Y; Wang Y; Huang W; Yao D; Zhao S; Wang Y; Ji D; Zhang R; Wang Y
    Sci Total Environ; 2021 Jun; 773():145264. PubMed ID: 33940722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality.
    Gu S; Guenther A; Faiola C
    Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities.
    Gkatzelis GI; Coggon MM; McDonald BC; Peischl J; Gilman JB; Aikin KC; Robinson MA; Canonaco F; Prevot ASH; Trainer M; Warneke C
    Environ Sci Technol; 2021 Apr; 55(8):4332-4343. PubMed ID: 33720711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of volatile organic compounds and their sources driving ozone and secondary organic aerosol formation in NE Spain.
    In 't Veld M; Seco R; Reche C; Pérez N; Alastuey A; Portillo-Estrada M; Janssens IA; Peñuelas J; Fernandez-Martinez M; Marchand N; Temime-Roussel B; Querol X; Yáñez-Serrano AM
    Sci Total Environ; 2024 Jan; 906():167159. PubMed ID: 37758152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.