These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33688336)

  • 1. Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS.
    Li H; Gong A; Zhao L; Zhang W; Wang F; Fu Y
    Comput Intell Neurosci; 2021; 2021():6614112. PubMed ID: 33688336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of Two-Class Motor Imagery in a fNIRS Based Brain Computer Interface.
    Moslehi AH; Bagheri M; Ludwig AM; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4051-4054. PubMed ID: 33018888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of Flexion and Extension Imagery Involving the Right and Left Arms Based on Deep Belief Network and Functional Near-Infrared Spectroscopy.
    Fu Y; Chen R; Gong A; Qian Q; Ding N; Zhang W; Su L; Zhao L
    J Healthc Eng; 2021; 2021():5533565. PubMed ID: 34306590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNN-based classification of fNIRS signals in motor imagery BCI system.
    Ma T; Wang S; Xia Y; Zhu X; Evans J; Sun Y; He S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33761480
    [No Abstract]   [Full Text] [Related]  

  • 9. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study.
    Zafar A; Hussain SJ; Ali MU; Lee SW
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.
    Dos Santos EM; San-Martin R; Fraga FJ
    Med Biol Eng Comput; 2023 Mar; 61(3):835-845. PubMed ID: 36626112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG Electrode Selection for a Two-Class Motor Imagery Task in a BCI Using fNIRS Prior Data.
    Moslehi AH; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6627-6630. PubMed ID: 34892627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals.
    Alhudhaif A
    PeerJ Comput Sci; 2021; 7():e537. PubMed ID: 34013040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronizing Motor Imagery Cue in fNIRS Brain-Computer Interface to reduce confounding effects of respiration.
    Premchand B; Zhang Z; Yu J; Yang T; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Articulation Motor Imagery using Early Connectivity Information in the Motor Cortex: A Functional Near-infrared Spectroscopy Study.
    Guo Z; Chen F
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fNIRS-based Neurorobotic Interface for gait rehabilitation.
    Khan RA; Naseer N; Qureshi NK; Noori FM; Nazeer H; Khan MU
    J Neuroeng Rehabil; 2018 Feb; 15(1):7. PubMed ID: 29402310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self produced mother wavelet feature extraction method for motor imagery brain-computer interface.
    Yeh WL; Huang YC; Chiou JH; Duann JR; Chiou JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4302-5. PubMed ID: 24110684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis.
    Nazeer H; Naseer N; Khan RA; Noori FM; Qureshi NK; Khan US; Khan MJ
    J Neural Eng; 2020 Oct; 17(5):056025. PubMed ID: 33055382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossing time windows optimization based on mutual information for hybrid BCI.
    Meng M; Dai L; She Q; Ma Y; Kong W
    Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.