BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33688726)

  • 1. Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length.
    Panuganti S; Besteiro LV; Vasileiadou ES; Hoffman JM; Govorov AO; Gray SK; Kanatzidis MG; Schaller RD
    J Am Chem Soc; 2021 Mar; 143(11):4244-4252. PubMed ID: 33688726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets.
    Singldinger A; Gramlich M; Gruber C; Lampe C; Urban AS
    ACS Energy Lett; 2020 May; 5(5):1380-1385. PubMed ID: 32421025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand.
    Otto JP; Wang L; Pochorovski I; Blau SM; Aspuru-Guzik A; Bao Z; Engel GS; Chiu M
    Chem Sci; 2018 Apr; 9(15):3694-3703. PubMed ID: 29780500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors.
    Humayun MH; Hernandez-Martinez PL; Gheshlaghi N; Erdem O; Altintas Y; Shabani F; Demir HV
    Small; 2021 Oct; 17(41):e2103524. PubMed ID: 34510722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface.
    Zhang J; Fu Y; Chowdhury MH; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS
    Taghipour N; Hernandez Martinez PL; Ozden A; Olutas M; Dede D; Gungor K; Erdem O; Perkgoz NK; Demir HV
    ACS Nano; 2018 Aug; 12(8):8547-8554. PubMed ID: 29965729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells.
    Proppe AH; Elkins MH; Voznyy O; Pensack RD; Zapata F; Besteiro LV; Quan LN; Quintero-Bermudez R; Todorovic P; Kelley SO; Govorov AO; Gray SK; Infante I; Sargent EH; Scholes GD
    J Phys Chem Lett; 2019 Feb; 10(3):419-426. PubMed ID: 30630317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures.
    Ghenuche P; de Torres J; Moparthi SB; Grigoriev V; Wenger J
    Nano Lett; 2014 Aug; 14(8):4707-14. PubMed ID: 25020141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning Electronic Structure in Layered Hybrid Perovskites with Organic Spacer Substitution.
    Leveillee J; Katan C; Even J; Ghosh D; Nie W; Mohite AD; Tretiak S; Schleife A; Neukirch AJ
    Nano Lett; 2019 Dec; 19(12):8732-8740. PubMed ID: 31675242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Single- and Two-Photon Luminescence Enhancement by Nonradiative Energy Transfer across Layered Heterostructure.
    Dandu M; Biswas R; Das S; Kallatt S; Chatterjee S; Mahajan M; Raghunathan V; Majumdar K
    ACS Nano; 2019 Apr; 13(4):4795-4803. PubMed ID: 30875198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer.
    Gholami S; Kompany-Zareh M
    Phys Chem Chem Phys; 2013 Sep; 15(34):14405-13. PubMed ID: 23884154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking in colloidal nanoplatelets: tuning excitonic properties.
    Guzelturk B; Erdem O; Olutas M; Kelestemur Y; Demir HV
    ACS Nano; 2014 Dec; 8(12):12524-33. PubMed ID: 25469555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.
    Kölle P; Pugliesi I; Langhals H; Wilcken R; Esterbauer AJ; de Vivie-Riedle R; Riedle E
    Phys Chem Chem Phys; 2015 Oct; 17(38):25061-72. PubMed ID: 26347443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates.
    Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J
    Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.