These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33688726)

  • 21. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler.
    Moroz P; Jin Z; Sugiyama Y; Lara D; Razgoniaeva N; Yang M; Kholmicheva N; Khon D; Mattoussi H; Zamkov M
    ACS Nano; 2018 Jun; 12(6):5657-5665. PubMed ID: 29883087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scaling law for excitons in 2D perovskite quantum wells.
    Blancon JC; Stier AV; Tsai H; Nie W; Stoumpos CC; Traoré B; Pedesseau L; Kepenekian M; Katsutani F; Noe GT; Kono J; Tretiak S; Crooker SA; Katan C; Kanatzidis MG; Crochet JJ; Even J; Mohite AD
    Nat Commun; 2018 Jun; 9(1):2254. PubMed ID: 29884900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS
    Zhang Q; Linardy E; Wang X; Eda G
    ACS Nano; 2020 Sep; 14(9):11482-11489. PubMed ID: 32790345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Förster and nanometal surface-energy transfer in CsPbCl
    Liu C; Zhang J; Chen Y; Wang L; Song Y; Wang L
    Phys Chem Chem Phys; 2022 Dec; 24(48):29902-29908. PubMed ID: 36468606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppressing Strong Exciton-Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems.
    Peng S; Wei Q; Wang B; Zhang Z; Yang H; Pang G; Wang K; Xing G; Sun XW; Tang Z
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22156-22162. PubMed ID: 32803819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy transfer mechanisms in layered 2D perovskites.
    Williams OF; Guo Z; Hu J; Yan L; You W; Moran AM
    J Chem Phys; 2018 Apr; 148(13):134706. PubMed ID: 29626878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile Tailoring of Metal-Organic Frameworks for Förster Resonance Energy Transfer-Driven Enhancement in Perovskite Photovoltaics.
    Liang X; Xia HL; Xiang J; Wang F; Ma J; Zhou X; Wang H; Liu XY; Zhu Q; Lin H; Pan J; Yuan M; Li G; Hu H
    Adv Sci (Weinh); 2024 May; 11(18):e2307476. PubMed ID: 38445968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores.
    Hevekerl H; Spielmann T; Chmyrov A; Widengren J
    J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism.
    Oh E; Huston AL; Shabaev A; Efros A; Currie M; Susumu K; Bussmann K; Goswami R; Fatemi FK; Medintz IL
    Sci Rep; 2016 Oct; 6():35538. PubMed ID: 27774984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast fluorescence resonance energy transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer: excitation wavelength dependence.
    Ghosh S; Dey S; Adhikari A; Mandal U; Bhattacharyya K
    J Phys Chem B; 2007 Jun; 111(25):7085-91. PubMed ID: 17530882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters.
    Prajapati R; Chatterjee S; Kannaujiya KK; Mukherjee TK
    Nanoscale; 2016 Jul; 8(26):13006-16. PubMed ID: 27304093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A potential carcinogenic pyrene derivative under Förster resonance energy transfer to various energy acceptors in nanoscopic environments.
    Banerjee S; Goswami N; Pal SK
    Chemphyschem; 2013 Oct; 14(15):3581-93. PubMed ID: 24038989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.
    de Torres J; Mivelle M; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Margeat E; Wenger J
    Nano Lett; 2016 Oct; 16(10):6222-6230. PubMed ID: 27623052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nature of photoinduced intermolecular charger transfer in fluorescence resonance energy transfer.
    Zong H; Mu X; Wang J; Zhao H; Shi Y; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():228-233. PubMed ID: 30412848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Singlet energy transfer in porphyrin-based donor-bridge-acceptor systems: interaction between bridge length and bridge energy.
    Pettersson K; Kyrychenko A; Rönnow E; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):310-8. PubMed ID: 16392870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.
    Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV
    ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinguishing Förster Resonance Energy Transfer and solvent-mediated charge-transfer relaxation dynamics in a zinc(II) indicator: a femtosecond time-resolved transient absorption spectroscopic study.
    Sreenath K; Yi C; Knappenberger KL; Zhu L
    Phys Chem Chem Phys; 2014 Mar; 16(11):5088-92. PubMed ID: 24504046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.