These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 33688740)
1. Light-Nucleotide versus Ion-Nucleotide Interactions for Single-Nucleotide Resolution. Farshad M; Rasaiah JC J Phys Chem B; 2021 Mar; 125(11):2863-2870. PubMed ID: 33688740 [TBL] [Abstract][Full Text] [Related]
2. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach. Kumawat RL; Pathak B J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006 [TBL] [Abstract][Full Text] [Related]
3. Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials. De Biase PM; Markosyan S; Noskov S J Comput Chem; 2014 Apr; 35(9):711-21. PubMed ID: 24738152 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA. Belkin M; Chao SH; Jonsson MP; Dekker C; Aksimentiev A ACS Nano; 2015 Nov; 9(11):10598-611. PubMed ID: 26401685 [TBL] [Abstract][Full Text] [Related]
5. DNA Origami-Graphene Hybrid Nanopore for DNA Detection. Barati Farimani A; Dibaeinia P; Aluru NR ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567 [TBL] [Abstract][Full Text] [Related]
6. Assessing graphene nanopores for sequencing DNA. Wells DB; Belkin M; Comer J; Aksimentiev A Nano Lett; 2012 Aug; 12(8):4117-23. PubMed ID: 22780094 [TBL] [Abstract][Full Text] [Related]
7. Single nucleobase identification for transversally-confined ssDNA using longitudinal ionic currents. Meng L; Huang J; He Z; Zhou R Nanoscale; 2022 May; 14(18):6922-6929. PubMed ID: 35452063 [TBL] [Abstract][Full Text] [Related]
8. DNA sequence-dependent ionic currents in ultra-small solid-state nanopores. Comer J; Aksimentiev A Nanoscale; 2016 May; 8(18):9600-13. PubMed ID: 27103233 [TBL] [Abstract][Full Text] [Related]
9. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore. Bhattacharya S; Yoo J; Aksimentiev A ACS Nano; 2016 Apr; 10(4):4644-51. PubMed ID: 27054820 [TBL] [Abstract][Full Text] [Related]
10. Unveiling the Microscopic Mechanism of Current Variation in the Sensing Region of the MspA Nanopore for DNA Sequencing. Yu M; Si W; Zeng T; Chen C; Lin X; Ji Z; Guo F; Li Y; Sha J; Dong Y J Phys Chem Lett; 2021 Sep; 12(37):9132-9141. PubMed ID: 34523927 [TBL] [Abstract][Full Text] [Related]
11. Computational investigation on DNA sequencing using functionalized graphene nanopores. Yu YS; Lu X; Ding HM; Ma YQ Phys Chem Chem Phys; 2018 Apr; 20(14):9063-9069. PubMed ID: 29446423 [TBL] [Abstract][Full Text] [Related]
12. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore. Yang H; Li Z; Si W; Lin K; Ma J; Li K; Sun L; Sha J; Chen Y J Phys Chem B; 2018 Aug; 122(32):7929-7935. PubMed ID: 30047733 [TBL] [Abstract][Full Text] [Related]
13. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores. Si W; Yang H; Sha J; Zhang Y; Chen Y Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188 [TBL] [Abstract][Full Text] [Related]
14. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores. Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Trapping of DNA in a Double-Nanopore System. Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493 [TBL] [Abstract][Full Text] [Related]
16. Slowing and controlling the translocation of DNA in a solid-state nanopore. Luan B; Stolovitzky G; Martyna G Nanoscale; 2012 Feb; 4(4):1068-77. PubMed ID: 22081018 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS Zou A; Xiu P; Ou X; Zhou R J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482 [TBL] [Abstract][Full Text] [Related]
18. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034 [TBL] [Abstract][Full Text] [Related]
19. DNA Detection with Single-Layer Ti Yadav P; Cao Z; Barati Farimani A ACS Nano; 2021 Mar; 15(3):4861-4869. PubMed ID: 33660990 [TBL] [Abstract][Full Text] [Related]
20. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores. Ramachandran A; Guo Q; Iqbal SM; Liu Y J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]