These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 33688848)
1. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study. Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848 [TBL] [Abstract][Full Text] [Related]
2. Web-based Real-Time Case Finding for the Population Health Management of Patients With Diabetes Mellitus: A Prospective Validation of the Natural Language Processing-Based Algorithm With Statewide Electronic Medical Records. Zheng L; Wang Y; Hao S; Shin AY; Jin B; Ngo AD; Jackson-Browne MS; Feller DJ; Fu T; Zhang K; Zhou X; Zhu C; Dai D; Yu Y; Zheng G; Li YM; McElhinney DB; Culver DS; Alfreds ST; Stearns F; Sylvester KG; Widen E; Ling XB JMIR Med Inform; 2016 Nov; 4(4):e37. PubMed ID: 27836816 [TBL] [Abstract][Full Text] [Related]
3. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment. Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046 [TBL] [Abstract][Full Text] [Related]
4. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing. Pan J; Zhang Z; Peters SR; Vatanpour S; Walker RL; Lee S; Martin EA; Quan H Brain Inform; 2023 Sep; 10(1):22. PubMed ID: 37658963 [TBL] [Abstract][Full Text] [Related]
5. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression. Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275 [TBL] [Abstract][Full Text] [Related]
6. Developing an Inpatient Electronic Medical Record Phenotype for Hospital-Acquired Pressure Injuries: Case Study Using Natural Language Processing Models. Nurmambetova E; Pan J; Zhang Z; Wu G; Lee S; Southern DA; Martin EA; Ho C; Xu Y; Eastwood CA JMIR AI; 2023 Mar; 2():e41264. PubMed ID: 38875552 [TBL] [Abstract][Full Text] [Related]
7. Determining Multiple Sclerosis Phenotype from Electronic Medical Records. Nelson RE; Butler J; LaFleur J; Knippenberg K; C Kamauu AW; DuVall SL J Manag Care Spec Pharm; 2016 Dec; 22(12):1377-1382. PubMed ID: 27882837 [TBL] [Abstract][Full Text] [Related]
8. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink. Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475 [TBL] [Abstract][Full Text] [Related]
9. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System. Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133 [TBL] [Abstract][Full Text] [Related]
10. Data for registry and quality review can be retrospectively collected using natural language processing from unstructured charts of arthroplasty patients. Shah RF; Bini S; Vail T Bone Joint J; 2020 Jul; 102-B(7_Supple_B):99-104. PubMed ID: 32600201 [TBL] [Abstract][Full Text] [Related]
11. Novel methodology to measure pre-procedure antimicrobial prophylaxis: integrating text searches with structured data from the Veterans Health Administration's electronic medical record. Mull HJ; Stolzmann K; Kalver E; Shin MH; Schweizer ML; Asundi A; Mehta P; Stanislawski M; Branch-Elliman W BMC Med Inform Decis Mak; 2020 Jan; 20(1):15. PubMed ID: 32000780 [TBL] [Abstract][Full Text] [Related]
12. Improvements to PTSD quality metrics with natural language processing. Shiner B; Levis M; Dufort VM; Patterson OV; Watts BV; DuVall SL; Russ CJ; Maguen S J Eval Clin Pract; 2022 Aug; 28(4):520-530. PubMed ID: 34028937 [TBL] [Abstract][Full Text] [Related]
13. Development of a natural language processing algorithm to detect chronic cough in electronic health records. Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999 [TBL] [Abstract][Full Text] [Related]
14. Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models. Levis M; Leonard Westgate C; Gui J; Watts BV; Shiner B Psychol Med; 2021 Jun; 51(8):1382-1391. PubMed ID: 32063248 [TBL] [Abstract][Full Text] [Related]
15. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing. Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA Front Digit Health; 2021; 3():777905. PubMed ID: 35005697 [No Abstract] [Full Text] [Related]
16. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records. Wang Y; Luo J; Hao S; Xu H; Shin AY; Jin B; Liu R; Deng X; Wang L; Zheng L; Zhao Y; Zhu C; Hu Z; Fu C; Hao Y; Zhao Y; Jiang Y; Dai D; Culver DS; Alfreds ST; Todd R; Stearns F; Sylvester KG; Widen E; Ling XB Int J Med Inform; 2015 Dec; 84(12):1039-47. PubMed ID: 26254876 [TBL] [Abstract][Full Text] [Related]
17. Natural language processing of radiology reports for identification of skeletal site-specific fractures. Wang Y; Mehrabi S; Sohn S; Atkinson EJ; Amin S; Liu H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):73. PubMed ID: 30943952 [TBL] [Abstract][Full Text] [Related]
18. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial. Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146 [TBL] [Abstract][Full Text] [Related]
19. Leveraging structured and unstructured electronic health record data to detect reasons for suboptimal statin therapy use in patients with atherosclerotic cardiovascular disease. Gobbel GT; Matheny ME; Reeves RR; Akeroyd JM; Turchin A; Ballantyne CM; Petersen LA; Virani SS Am J Prev Cardiol; 2022 Mar; 9():100300. PubMed ID: 34950914 [TBL] [Abstract][Full Text] [Related]
20. Natural language processing to identify lupus nephritis phenotype in electronic health records. Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]