These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33689227)

  • 1. Hill-based musculoskeletal model for a fracture reduction robot.
    Tan Y; Fu Z; Duan L; Cui R; Wu M; Chen J; Guo Y; Li J; Guo X; Sun H
    Int J Med Robot; 2021 Jun; 17(3):e2252. PubMed ID: 33689227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction.
    Li C; Wang T; Hu L; Zhang L; Zhao Y; Du H; Wang L; Tang P
    Biomed Mater Eng; 2015; 26 Suppl 1():S365-74. PubMed ID: 26406025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory optimisation with musculoskeletal integration features for fracture reduction orthopaedic robot.
    Cui R; Li J; Jiang Y; Sun H; Tan Y; Duan L; Wu M
    Int J Med Robot; 2022 Apr; 18(2):e2372. PubMed ID: 35107208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive variable impedance position/force tracking control of fracture reduction robot.
    Zheng G; Lei J; Hu L; Zhang L
    Int J Med Robot; 2023 Apr; 19(2):e2469. PubMed ID: 36302164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect visual guided fracture reduction robot based on external markers.
    Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 32881221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraint of musculoskeletal tissue and path planning of robot-assisted fracture reduction with collision avoidance.
    Xu H; Lei J; Hu L; Zhang L
    Int J Med Robot; 2022 Apr; 18(2):e2361. PubMed ID: 34969160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone collision detection method for robot assisted fracture reduction based on force curve slope.
    Cai C; Sun C; Song Y; Lv Q; Bi J; Zhang Q
    Comput Methods Programs Biomed; 2021 Sep; 209():106315. PubMed ID: 34352651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on circumpelvic muscle deformation and dynamic simulation of pelvic fracture reduction.
    Lei J; Li Y; Xu H
    Comput Methods Biomech Biomed Engin; 2023 May; 26(6):734-743. PubMed ID: 35686483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose.
    Kim WY; Ko SY
    Int J Med Robot; 2019 Apr; 15(2):e1967. PubMed ID: 30346113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot-robot cooperative control using positioning robot and 1-DOF traction device for robot-assisted fracture reduction system.
    Kim WY; Joung S; Park H; Park JO; Ko SY
    Proc Inst Mech Eng H; 2022 May; 236(5):697-710. PubMed ID: 35234094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
    Li C; Wang T; Hu L; Zhang L; Du H; Zhao L; Wang L; Tang P
    Proc Inst Mech Eng H; 2015 Sep; 229(9):629-37. PubMed ID: 26199026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect visual guided fracture reduction robot based on external markers.
    Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S
    Int J Med Robot; 2020 Aug; ():e2153. PubMed ID: 32813892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Musculoskeletal modeling and humanoid control of robots based on human gait data.
    Yu J; Zhang S; Wang A; Li W; Song L
    PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimally invasive treatment of displaced femoral shaft fractures with a teleoperated robot-assisted surgical system.
    Zhu Q; Liang B; Wang X; Sun X; Wang L
    Injury; 2017 Oct; 48(10):2253-2259. PubMed ID: 28736125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis on muscle force and injured femoral reduction force based on new muscle tendon model].
    Zhai Y; Yu L; Chen D; Cui Z; Lei J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):732-741. PubMed ID: 34459174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.
    Jayaneththi VR; Viloria J; Wiedemann LG; Jarrett C; McDaid AJ
    Comput Biol Med; 2017 Jul; 86():82-89. PubMed ID: 28511122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review.
    Zhao JX; Li C; Ren H; Hao M; Zhang LC; Tang PF
    Ann Biomed Eng; 2020 Jan; 48(1):203-224. PubMed ID: 31359265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time-Capable Muscle Force Estimation for Monitoring Robotic Rehabilitation Therapy in the Intensive Care Unit.
    Peper KK; Aasmann A; Jensen ER; Haddadin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis.
    Schröder ML; Staartjes VE
    Neurosurg Focus; 2017 May; 42(5):E12. PubMed ID: 28463610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.