BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3368926)

  • 1. Spreadsheet programming--a new approach in physiologically based modeling of solvent toxicokinetics.
    Johanson G; Näslund PH
    Toxicol Lett; 1988 May; 41(2):115-27. PubMed ID: 3368926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.
    Nakayama Y; Kishida F; Nakatsuka I; Matsuo M
    Environ Sci; 2005; 12(1):21-32. PubMed ID: 15793558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A physiologically based pharmacokinetic model to describe the transfer of organic solvents in the human body. Simulation of kinetic behavior of trichloroethylene using a spreadsheet program].
    Endoh K; Kaneko T; Sato A
    Sangyo Igaku; 1989 Sep; 31(5):335-41. PubMed ID: 2585812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically based pharmacokinetic modeling of inhaled 2-butoxyethanol in man.
    Johanson G
    Toxicol Lett; 1986 Nov; 34(1):23-31. PubMed ID: 3787662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of age and gender differences in biochemical processes affecting the disposition of 2-butoxyethanol and its metabolites in mice and rats to improve PBPK modeling.
    Corley RA; Grant DM; Farris E; Weitz KK; Soelberg JJ; Thrall KD; Poet TS
    Toxicol Lett; 2005 Mar; 156(1):127-61. PubMed ID: 15705493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of respiratory exchange of polar solvents.
    Johanson G
    Ann Occup Hyg; 1991 Jun; 35(3):323-39. PubMed ID: 1888103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human physiological model describing acetone kinetics in blood and breath during various levels of physical exercise.
    Mörk AK; Johanson G
    Toxicol Lett; 2006 Jun; 164(1):6-15. PubMed ID: 16364574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically based pharmacokinetic model for chronic inhalation of 2-butoxyethanol.
    Lee KM; Dill JA; Chou BJ; Roycroft JH
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):211-26. PubMed ID: 9878592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a physiologically based pharmacokinetic model of organic solvent in rats.
    Kaneko T; Horiuchi J; Sato A
    Pharmacol Res; 2000 Nov; 42(5):465-70. PubMed ID: 11023709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity analysis for physiologically based pharmacokinetic models.
    Hetrick DM; Jarabek AM; Travis CC
    J Pharmacokinet Biopharm; 1991 Feb; 19(1):1-20. PubMed ID: 2023106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure.
    Boerleider RZ; Olie JD; van Eijkeren JC; Bos PM; Hof BG; de Vries I; Bessems JG; Meulenbelt J; Hunault CC
    Toxicol Lett; 2015 Jan; 232(1):21-7. PubMed ID: 25455448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice.
    Evans MV; Caldwell JC
    Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicokinetics of inhaled 2-butoxyethanol and its major metabolite, 2-butoxyacetic acid, in F344 rats and B6C3F1 mice.
    Dill JA; Lee KM; Bates DJ; Anderson DJ; Johnson RE; Chou BJ; Burka LT; Roycroft JH
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):227-42. PubMed ID: 9878593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-body autoradiography and allied tracer techniques in distribution and elimination studies of some organic solvents: benzene, toluene, xylene, styrene, methylene chloride, chloroform, carbon tetrachloride and trichloroethylene.
    Bergman K
    Scand J Work Environ Health; 1979; 5 Suppl 1():1-263. PubMed ID: 424704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically based pharmacokinetic modelling of human exposure to 2-butoxyethanol.
    Franks SJ; Spendiff MK; Cocker J; Loizou GD
    Toxicol Lett; 2006 Apr; 162(2-3):164-73. PubMed ID: 16246510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals.
    Olie JD; Bessems JG; Clewell HJ; Meulenbelt J; Hunault CC
    Chemosphere; 2015 Aug; 132():47-55. PubMed ID: 25794648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based pharmacokinetics of 2-butoxyethanol and its major metabolite, 2-butoxyacetic acid, in rats and humans.
    Corley RA; Bormett GA; Ghanayem BI
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):61-79. PubMed ID: 7974497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically motivated models for chemical risk assessment.
    Clewell HJ; Andersen ME
    Health Phys; 1989; 57 Suppl 1():129-37. PubMed ID: 2606675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the impact of heat stress on the toxicokinetics of toluene and acetone.
    Marchand A; Ménard J; Brochu P; Haddad S
    Arch Toxicol; 2024 Feb; 98(2):471-479. PubMed ID: 38127129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.