These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33689274)

  • 21. Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage.
    Morales-Ugarte JE; Benayad A; Santini CC; Bouchet R
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21955-21964. PubMed ID: 31124650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes.
    Rakov DA; Chen F; Ferdousi SA; Li H; Pathirana T; Simonov AN; Howlett PC; Atkin R; Forsyth M
    Nat Mater; 2020 Oct; 19(10):1096-1101. PubMed ID: 32367080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content.
    Girard GM; Hilder M; Zhu H; Nucciarone D; Whitbread K; Zavorine S; Moser M; Forsyth M; MacFarlane DR; Howlett PC
    Phys Chem Chem Phys; 2015 Apr; 17(14):8706-13. PubMed ID: 25820549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors.
    Wang W; Deng W; Wang X; Li Y; Zhou Z; Hu Z; Xue M; Li R
    Chem Commun (Camb); 2020 Jul; 56(57):7965-7968. PubMed ID: 32538378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction analysis between binder and particles in multiphase slurries.
    Cho KY; Kwon YI; Youn JR; Song YS
    Analyst; 2013 Apr; 138(7):2044-50. PubMed ID: 23392111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of slurries for lithium-ion battery cathodes by measuring their flow and change in hydrostatic pressure over time and clarification of the relationship between slurry and cathode properties.
    Mori T; Ochi T; Kitamura K
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):36-45. PubMed ID: 36150247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SEI Formation on Sodium Metal Electrodes in Superconcentrated Ionic Liquid Electrolytes and the Effect of Additive Water.
    Ferdousi SA; O'Dell LA; Hilder M; Barlow AJ; Armand M; Forsyth M; Howlett PC
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5706-5720. PubMed ID: 33496175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete characterization of a lithium battery electrolyte using a combination of electrophoretic NMR and electrochemical methods.
    Hickson DT; Halat DM; Ho AS; Reimer JA; Balsara NP
    Phys Chem Chem Phys; 2022 Nov; 24(43):26591-26599. PubMed ID: 36285835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.
    Lin X; Chapman Varela J; Grinstaff MW
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Eutectic Solvent Based on Lithium Bis[(trifluoromethyl)sulfonyl] Imide (LiTFSI) and 2,2,2-Trifluoroacetamide (TFA) as a Promising Electrolyte for a High Voltage Lithium-Ion Battery with a LiMn
    Dinh TTA; Huynh TTK; Le LTM; Truong TTT; Nguyen OH; Tran KTT; Tran MV; Tran PH; Kaveevivitchai W; Le PML
    ACS Omega; 2020 Sep; 5(37):23843-23853. PubMed ID: 32984704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems.
    Röchow ET; Coeler M; Pospiech D; Kobsch O; Mechtaeva E; Vogel R; Voit B; Nikolowski K; Wolter M
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition between Conversion Reaction with Cerium Dioxide and Lithium Plating in Superconcentrated Electrolyte.
    Shiga T; Masuoka Y; Kato Y
    Langmuir; 2020 Nov; 36(46):14039-14045. PubMed ID: 33174756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic features of water molecules in superconcentrated aqueous electrolytes.
    Han S
    Sci Rep; 2018 Jun; 8(1):9347. PubMed ID: 29921880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.