BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33689280)

  • 1. Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li
    Hu S; Du L; Zhang G; Zou W; Zhu Z; Xu L; Mai L
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13183-13190. PubMed ID: 33689280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Li-ion conduction in composite polymer electrolytes using Li
    Xu L; Zhang L; Hu Y; Luo L
    Chem Commun (Camb); 2021 Oct; 57(84):11068-11071. PubMed ID: 34612289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium-Salt-Rich PEO/Li
    Wang X; Zhang Y; Zhang X; Liu T; Lin YH; Li L; Shen Y; Nan CW
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24791-24798. PubMed ID: 29972294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyoxyethylene (PEO)|PEO-Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries.
    Liu K; Zhang R; Sun J; Wu M; Zhao T
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46930-46937. PubMed ID: 31765131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.
    Liu W; Liu N; Sun J; Hsu PC; Li Y; Lee HW; Cui Y
    Nano Lett; 2015 Apr; 15(4):2740-5. PubMed ID: 25782069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Ion Conductive Polymer-Based Composite Electrolytes for High-Performance Solid-State Lithium Metal Batteries.
    Wen K; Guan S; Liu S; Yuan H; Liang Y; Yu D; Zhang Z; Li L; Nan CW
    Small; 2024 Feb; 20(6):e2304164. PubMed ID: 37775941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Oxygen Vacancy Inducing Li-Ion-Conducting Percolation Network in Composite Solid Electrolytes for All-Solid-State Lithium-Metal Batteries.
    Yun H; Cho J; Ryu S; Pyo S; Kim H; Lee J; Min B; Cho YH; Seo H; Yoo J; Kim YS
    Small; 2023 Jun; 19(22):e2207223. PubMed ID: 36808806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li
    He KQ; Zha JW; Du P; Cheng SH; Liu C; Dang ZM; Li RKY
    Dalton Trans; 2019 Mar; 48(10):3263-3269. PubMed ID: 30776033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of Dehydrofluorination Reactions of a Li
    Rath PC; Liu MS; Lo ST; Dhaka RS; Bresser D; Yang CC; Lee SW; Chang JK
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15429-15438. PubMed ID: 36920173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydopamine Coated Lithium Lanthanum Titanate in Bilayer Membrane Electrolytes for Solid Lithium Batteries.
    Jia M; Bi Z; Shi C; Zhao N; Guo X
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46231-46238. PubMed ID: 32955855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A-LLTO Nanoparticles Embedded Composite Solid Polymer Electrolyte for Room Temperature Operational Li-metal Batteries.
    Paste R; Chen YT; Borde K; Dhage A; Sun SS; Lin HC; Chu CW
    Small; 2024 May; ():e2311382. PubMed ID: 38698599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-Inorganic Composite Electrolytes Optimized with Fluoroethylene Carbonate Additive for Quasi-Solid-State Lithium-Metal Batteries.
    Li S; Sun G; He M; Li H
    ACS Appl Mater Interfaces; 2022 May; 14(18):20962-20971. PubMed ID: 35476410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li
    Li B; Su Q; Yu L; Wang D; Ding S; Zhang M; Du G; Xu B
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42206-42213. PubMed ID: 31625713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-Induced Metal-Organic Framework Network-Enhanced High-Performance Composite Solid-State Electrolytes for Dendrite-Free Lithium Metal Batteries.
    Wei L; Xu X; Xi K; Shi X; Cheng X; Lei Y; Gao Y
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):878-888. PubMed ID: 38114416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Poly(vinylidene fluoride-hexafluoropropylene)-Based Composite Electrolytes with Excellent Interfacial Compatibility for Room-Temperature All-Solid-State Lithium Metal Batteries.
    Du SY; Ren GX; Zhang N; Liu XS
    ACS Omega; 2022 Jun; 7(23):19631-19639. PubMed ID: 35721924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An LLTO-containing heterogeneous composite electrolyte with a stable interface for solid-state lithium metal batteries.
    Bi J; Zhang L; Wu B; Xiao M; Wang L; Li Z
    Dalton Trans; 2023 Oct; 52(39):14064-14074. PubMed ID: 37740383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Polymerization Derived from PAN-Based Porous Membrane Realizing Double-Stabilized Interface and High Ionic Conductivity for Lithium-Metal Batteries.
    Liu J; Lin H; Li H; Zhao D; Liu W; Tao X
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38605517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite Polymer Electrolytes with Li
    Yang T; Zheng J; Cheng Q; Hu YY; Chan CK
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21773-21780. PubMed ID: 28598143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Fast-Charge Capabilities in Solid-State Lithium Batteries through the Integration of High Li
    Cao C; Zhong Y; Zhao L; Seneque H; Shao Z
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59370-59379. PubMed ID: 38097508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries.
    Shi P; Ma J; Liu M; Guo S; Huang Y; Wang S; Zhang L; Chen L; Yang K; Liu X; Li Y; An X; Zhang D; Cheng X; Li Q; Lv W; Zhong G; He YB; Kang F
    Nat Nanotechnol; 2023 Jun; 18(6):602-610. PubMed ID: 36894781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.