These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33689312)

  • 21. Uracil in DNA--occurrence, consequences and repair.
    Krokan HE; Drabløs F; Slupphaug G
    Oncogene; 2002 Dec; 21(58):8935-48. PubMed ID: 12483510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic capture of an extrahelical thymine in the search for uracil in DNA.
    Parker JB; Bianchet MA; Krosky DJ; Friedman JI; Amzel LM; Stivers JT
    Nature; 2007 Sep; 449(7161):433-7. PubMed ID: 17704764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure of an 11-mer duplex containing the 3, N(4)-ethenocytosine adduct opposite 2'-deoxycytidine: implications for the recognition of exocyclic lesions by DNA glycosylases.
    Cullinan D; Johnson F; de los Santos C
    J Mol Biol; 2000 Feb; 296(3):851-61. PubMed ID: 10677286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathways of accumulation and repair of deoxyuridine residues in DNA of higher and lower organisms.
    Vasilenko NL; Nevinsky GA
    Biochemistry (Mosc); 2003 Feb; 68(2):135-51. PubMed ID: 12693959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Specificity of damage recognition and catalysis of DNA repair.
    Osman R; Fuxreiter M; Luo N
    Comput Chem; 2000 May; 24(3-4):331-9. PubMed ID: 10816003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition?
    Krosky DJ; Schwarz FP; Stivers JT
    Biochemistry; 2004 Apr; 43(14):4188-95. PubMed ID: 15065862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes.
    Rodriguez Y; Smerdon MJ
    J Biol Chem; 2013 May; 288(19):13863-75. PubMed ID: 23543741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases.
    Kino K; Shimizu Y; Sugasawa K; Sugiyama H; Hanaoka F
    Biochemistry; 2004 Mar; 43(10):2682-7. PubMed ID: 15005603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic opening of DNA during the enzymatic search for a damaged base.
    Cao C; Jiang YL; Stivers JT; Song F
    Nat Struct Mol Biol; 2004 Dec; 11(12):1230-6. PubMed ID: 15558051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initiation of repair of A/G mismatches is modulated by sequence context.
    Sanchez AM; Volk DE; Gorenstein DG; Lloyd RS
    DNA Repair (Amst); 2003 Aug; 2(8):863-78. PubMed ID: 12893083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function in the uracil-DNA glycosylase superfamily.
    Pearl LH
    Mutat Res; 2000 Aug; 460(3-4):165-81. PubMed ID: 10946227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA repair: models for damage and mismatch recognition.
    Rajski SR; Jackson BA; Barton JK
    Mutat Res; 2000 Jan; 447(1):49-72. PubMed ID: 10686306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS).
    Terato H; Masaoka A; Kobayashi M; Fukushima S; Ohyama Y; Yoshida M; Ide H
    J Biol Chem; 1999 Aug; 274(35):25144-50. PubMed ID: 10455196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic repair of 5-formyluracil. I. Excision of 5-formyluracil site-specifically incorporated into oligonucleotide substrates by alka protein (Escherichia coli 3-methyladenine DNA glycosylase II).
    Masaoka A; Terato H; Kobayashi M; Honsho A; Ohyama Y; Ide H
    J Biol Chem; 1999 Aug; 274(35):25136-43. PubMed ID: 10455195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge.
    Schonhoft JD; Kosowicz JG; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2526-35. PubMed ID: 23506309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Specific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases.
    Wang H; Lawrence CW; Li GM; Hays JB
    J Biol Chem; 1999 Jun; 274(24):16894-900. PubMed ID: 10358035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the binding of p53 to DNAs containing mismatched and bulged bases.
    Degtyareva N; Subramanian D; Griffith JD
    J Biol Chem; 2001 Mar; 276(12):8778-84. PubMed ID: 11124254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations.
    Djuranovic D; Hartmann B
    Biopolymers; 2004 Feb; 73(3):356-68. PubMed ID: 14755572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.