These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33689315)

  • 21. Thermal Control of Plasmonic Surface Lattice Resonances.
    Kelavuori J; Vanyukov V; Stolt T; Karvinen P; Rekola H; Hakala TK; Huttunen MJ
    Nano Lett; 2022 May; 22(10):3879-3883. PubMed ID: 35506595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic surface lattice resonances at the strong coupling regime.
    Väkeväinen AI; Moerland RJ; Rekola HT; Eskelinen AP; Martikainen JP; Kim DH; Törmä P
    Nano Lett; 2014; 14(4):1721-7. PubMed ID: 24279840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion of polarization coupling, localized and collective plasmon modes in a metallic photonic crystal mapped by Mueller Matrix Ellipsometry.
    Brakstad T; Kildemo M; Ghadyani Z; Simonsen I
    Opt Express; 2015 Aug; 23(17):22800-15. PubMed ID: 26368248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations.
    Sun K; Cai Y; Levy U; Han Z
    Beilstein J Nanotechnol; 2023; 14():322-328. PubMed ID: 36925612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides.
    Murai S; Verschuuren MA; Lozano G; Pirruccio G; Rodriguez SR; Rivas JG
    Opt Express; 2013 Feb; 21(4):4250-62. PubMed ID: 23481959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment.
    Yang X; Xiao G; Lu Y; Li G
    Opt Express; 2019 Sep; 27(18):25384-25394. PubMed ID: 31510411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-Range Dipole-Dipole Interactions in a Plasmonic Lattice.
    Boddeti AK; Guan J; Sentz T; Juarez X; Newman W; Cortes C; Odom TW; Jacob Z
    Nano Lett; 2022 Jan; 22(1):22-28. PubMed ID: 34672615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
    Kravets VG; Kabashin AV; Barnes WL; Grigorenko AN
    Chem Rev; 2018 Jun; 118(12):5912-5951. PubMed ID: 29863344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances.
    Hamans RF; Parente M; Castellanos GW; Ramezani M; Gómez Rivas J; Baldi A
    ACS Nano; 2019 Apr; 13(4):4514-4521. PubMed ID: 30938979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays.
    Deeb C; Guo Z; Yang A; Huang L; Odom TW
    Nano Lett; 2018 Feb; 18(2):1454-1459. PubMed ID: 29369639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality.
    Ponomareva E; Volk K; Mulvaney P; Karg M
    Langmuir; 2020 Nov; 36(45):13601-13612. PubMed ID: 33147412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic Photoelectrocatalysis in Copper-Platinum Core-Shell Nanoparticle Lattices.
    Deng S; Zhang B; Choo P; Smeets PJM; Odom TW
    Nano Lett; 2021 Feb; 21(3):1523-1529. PubMed ID: 33508199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Second Harmonic Spectroscopy of Surface Lattice Resonances.
    Hooper DC; Kuppe C; Wang D; Wang W; Guan J; Odom TW; Valev VK
    Nano Lett; 2019 Jan; 19(1):165-172. PubMed ID: 30525669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition.
    Rodriguez SR; Rivas JG
    Opt Express; 2013 Nov; 21(22):27411-21. PubMed ID: 24216963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical study of extremely narrow plasmonic surface lattice resonances observed by MIM nanogratings under normal incidence in asymmetric environments.
    Yang X; Xia D; Li J
    Nanotechnology; 2022 Aug; 33(44):. PubMed ID: 35901661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lasing in Ni Nanodisk Arrays.
    Pourjamal S; Hakala TK; Nečada M; Freire-Fernández F; Kataja M; Rekola H; Martikainen JP; Törmä P; van Dijken S
    ACS Nano; 2019 May; 13(5):5686-5692. PubMed ID: 30973219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.