These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 33689918)

  • 1. Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks.
    Maciąg PS; Kryszkiewicz M; Bembenik R; L Lobo J; Del Ser J
    Neural Netw; 2021 Jul; 139():118-139. PubMed ID: 33689918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online and Unsupervised Anomaly Detection for Streaming Data Using an Array of Sliding Windows and PDDs.
    Zhang L; Zhao J; Li W
    IEEE Trans Cybern; 2021 Apr; 51(4):2284-2289. PubMed ID: 31794407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks.
    Cherdo Y; Miramond B; Pegatoquet A; Vallauri A
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A density-based competitive data stream clustering network with self-adaptive distance metric.
    Xu B; Shen F; Zhao J
    Neural Netw; 2019 Feb; 110():141-158. PubMed ID: 30557793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the stimuli encoding scheme of evolving Spiking Neural Networks for stream learning.
    Lobo JL; Oregi I; Bifet A; Del Ser J
    Neural Netw; 2020 Mar; 123():118-133. PubMed ID: 31841878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised Anomaly Detection With LSTM Neural Networks.
    Ergen T; Kozat SS
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):3127-3141. PubMed ID: 31536024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection.
    Noto K; Brodley C; Slonim D
    Data Min Knowl Discov; 2012; 25(1):109-133. PubMed ID: 22639542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TimeTector: A Twin-Branch Approach for Unsupervised Anomaly Detection in Livestock Sensor Noisy Data (TT-TBAD).
    Kakar JK; Hussain S; Kim SC; Kim H
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adversarial Time-Frequency Reconstruction Network for Unsupervised Anomaly Detection.
    Fan J; Wang Z; Wu H; Sun D; Wu J; Lu X
    Neural Netw; 2023 Nov; 168():44-56. PubMed ID: 37741104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving Spiking Neural Networks for online learning over drifting data streams.
    Lobo JL; Laña I; Del Ser J; Bilbao MN; Kasabov N
    Neural Netw; 2018 Dec; 108():1-19. PubMed ID: 30130678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised spectral mapping and feature selection for hyperspectral anomaly detection.
    Xie W; Li Y; Lei J; Yang J; Li J; Jia X; Li Z
    Neural Netw; 2020 Dec; 132():144-154. PubMed ID: 32889154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiking Neural Networks and online learning: An overview and perspectives.
    Lobo JL; Del Ser J; Bifet A; Kasabov N
    Neural Netw; 2020 Jan; 121():88-100. PubMed ID: 31536902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Supervised Anomaly Detection in Video-Surveillance Scenes in the Wild.
    Sarker MI; Losada-Gutiérrez C; Marrón-Romera M; Fuentes-Jiménez D; Luengo-Sánchez S
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (Predictable) performance bias in unsupervised anomaly detection.
    Meissen F; Breuer S; Knolle M; Buyx A; Müller R; Kaissis G; Wiestler B; Rückert D
    EBioMedicine; 2024 Mar; 101():105002. PubMed ID: 38335791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series.
    Garg A; Zhang W; Samaran J; Savitha R; Foo CS
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2508-2517. PubMed ID: 34464278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for unsupervised anomaly detection: An application to Web time series data.
    Yoshihara K; Takahashi K
    PLoS One; 2022; 17(1):e0262463. PubMed ID: 35015791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised neural network models of the ventral visual stream.
    Zhuang C; Yan S; Nayebi A; Schrimpf M; Frank MC; DiCarlo JJ; Yamins DLK
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents.
    Liu M; Li M; Zhang X
    Comput Intell Neurosci; 2022; 2022():5653942. PubMed ID: 35707184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.