These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 33689918)
21. Unsupervised Pathology Detection: A Deep Dive Into the State of the Art. Lagogiannis I; Meissen F; Kaissis G; Rueckert D IEEE Trans Med Imaging; 2024 Jan; 43(1):241-252. PubMed ID: 37506004 [TBL] [Abstract][Full Text] [Related]
22. Self-supervised learning for classifying paranasal anomalies in the maxillary sinus. Bhattacharya D; Behrendt F; Becker BT; Maack L; Beyersdorff D; Petersen E; Petersen M; Cheng B; Eggert D; Betz C; Hoffmann AS; Schlaefer A Int J Comput Assist Radiol Surg; 2024 Sep; 19(9):1713-1721. PubMed ID: 38850438 [TBL] [Abstract][Full Text] [Related]
23. Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. Tian Y; Liu F; Pang G; Chen Y; Liu Y; Verjans JW; Singh R; Carneiro G Med Image Anal; 2023 Dec; 90():102930. PubMed ID: 37657364 [TBL] [Abstract][Full Text] [Related]
24. Unsupervised novelty detection for time series using a deep learning approach. Hossen MJ; Hoque JMZ; Aziz NABA; Ramanathan TT; Raja JE Heliyon; 2024 Feb; 10(3):e25394. PubMed ID: 38356518 [TBL] [Abstract][Full Text] [Related]
27. Self-supervised anomaly detection, staging and segmentation for retinal images. Li Y; Lao Q; Kang Q; Jiang Z; Du S; Zhang S; Li K Med Image Anal; 2023 Jul; 87():102805. PubMed ID: 37104995 [TBL] [Abstract][Full Text] [Related]
28. FuseAD: Unsupervised Anomaly Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models. Munir M; Siddiqui SA; Chattha MA; Dengel A; Ahmed S Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146357 [TBL] [Abstract][Full Text] [Related]
29. An Unsupervised Data-Driven Anomaly Detection Approach for Adverse Health Conditions in People Living With Dementia: Cohort Study. Bijlani N; Nilforooshan R; Kouchaki S JMIR Aging; 2022 Sep; 5(3):e38211. PubMed ID: 36121687 [TBL] [Abstract][Full Text] [Related]
30. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Schlegl T; Seeböck P; Waldstein SM; Langs G; Schmidt-Erfurth U Med Image Anal; 2019 May; 54():30-44. PubMed ID: 30831356 [TBL] [Abstract][Full Text] [Related]
31. Unsupervised anomaly detection in MR images using multicontrast information. Kim B; Kwon K; Oh C; Park H Med Phys; 2021 Nov; 48(11):7346-7359. PubMed ID: 34628653 [TBL] [Abstract][Full Text] [Related]
32. Supervised learning in spiking neural networks: A review of algorithms and evaluations. Wang X; Lin X; Dang X Neural Netw; 2020 May; 125():258-280. PubMed ID: 32146356 [TBL] [Abstract][Full Text] [Related]
33. Incremental Unsupervised Domain-Adversarial Training of Neural Networks. Gallego AJ; Calvo-Zaragoza J; Fisher RB IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):4864-4878. PubMed ID: 33027004 [TBL] [Abstract][Full Text] [Related]
35. An Efficient and Robust Unsupervised Anomaly Detection Method Using Ensemble Random Projection in Surveillance Videos. Hu J; Zhu E; Wang S; Liu X; Guo X; Yin J Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554333 [TBL] [Abstract][Full Text] [Related]
39. Local distinguishability aggrandizing network for human anomaly detection. Gong M; Zeng H; Xie Y; Li H; Tang Z Neural Netw; 2020 Feb; 122():364-373. PubMed ID: 31760371 [TBL] [Abstract][Full Text] [Related]
40. Semisupervised Training of Deep Generative Models for High-Dimensional Anomaly Detection. Xie Q; Zhang P; Yu B; Choi J IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2444-2453. PubMed ID: 34288877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]