BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33690014)

  • 1. Incorporating the recovered carbon black produced in an industrial-scale waste tire pyrolysis plant into a natural rubber formulation.
    Urrego-Yepes W; Cardona-Uribe N; Vargas-Isaza CA; Martínez JD
    J Environ Manage; 2021 Jun; 287():112292. PubMed ID: 33690014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber.
    Sagar M; Nibedita K; Manohar N; Kumar KR; Suchismita S; Pradnyesh A; Reddy AB; Sadiku ER; Gupta UN; Lachit P; Jayaramudu J
    Waste Manag; 2018 Apr; 74():110-122. PubMed ID: 29331488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading recovered carbon black (rCB) from industrial-scale end-of-life tires (ELTs) pyrolysis to activated carbons: Material characterization and CO
    Dziejarski B; Hernández-Barreto DF; Moreno-Piraján JC; Giraldo L; Serafin J; Knutsson P; Andersson K; Krzyżyńska R
    Environ Res; 2024 Apr; 247():118169. PubMed ID: 38244973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding.
    Martínez JD; Cardona-Uribe N; Murillo R; García T; López JM
    Waste Manag; 2019 Feb; 85():574-584. PubMed ID: 30803613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste tire valorization by intermediate pyrolysis using a continuous twin-auger reactor: Operational features.
    Martínez JD; Campuzano F; Cardona-Uribe N; Arenas CN; Muñoz-Lopera D
    Waste Manag; 2020 Jul; 113():404-412. PubMed ID: 32593106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacing commercial carbon black by pyrolytic residue from waste tire for tire processing: Technically feasible and economically reasonable.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Nov; 793():148597. PubMed ID: 34182453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant Influence of Bound Rubber Thickness on the Rubber Reinforcement Effect.
    Chen J; Hu M; Li Y; Li R; Qing L
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolytic preparation and modification of carbon black recovered from waste tyres.
    Zhong R; Xu J; Hui D; Bhosale SS; Hong R
    Waste Manag Res; 2020 Jan; 38(1):35-43. PubMed ID: 31470764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of iodine number of carbon black obtained from waste tire pyrolysis plant via response surface methodology.
    Thonglhueng N; Sirisangsawang R; Sukpancharoen S; Phetyim N
    Heliyon; 2022 Dec; 8(12):e11971. PubMed ID: 36506372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires.
    Costa SMR; Fowler D; Carreira GA; Portugal I; Silva CM
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of networked hybridized nanoparticle reinforcement on the thermal conductivity and mechanical properties of natural rubber composites.
    Jayasinghe JMARB; De Silva RT; de Silva RM; de Silva KMN; Mantilaka MMMGPG; Silva VA
    RSC Adv; 2019 Jan; 9(2):636-644. PubMed ID: 35517593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methacrylic acid in situ modified steel converter slag/natural rubber composites: Resourceful utilization of steelmaking solid wastes.
    Kong H; Luo K; Yong Z
    Waste Manag; 2024 May; 180():36-46. PubMed ID: 38503032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature.
    Dong R; Zhao M; Xia W; Yi X; Dai P; Tang N
    Waste Manag; 2018 Sep; 79():516-525. PubMed ID: 30343783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of Self-Healing Butyl Rubber and Natural Rubber Composites for Improving the Stability.
    Chumnum K; Kalkornsurapranee E; Johns J; Sengloyluan K; Nakaramontri Y
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33573166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of gaseous and solid product from thermal plasma pyrolysis of waste rubber.
    Huang H; Tang L; Wu CZ
    Environ Sci Technol; 2003 Oct; 37(19):4463-7. PubMed ID: 14572101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoplastic vulcanizates based on waste truck tire rubber and copolyester blends reinforced with carbon black.
    Sripornsawat B; Saiwari S; Nakason C
    Waste Manag; 2018 Sep; 79():638-646. PubMed ID: 30343796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.