These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33690121)
1. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton. Zhou T; Xiong C; Zhang J; Chen W; Huang X IEEE Trans Neural Syst Rehabil Eng; 2021; 29():662-672. PubMed ID: 33690121 [TBL] [Abstract][Full Text] [Related]
2. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. Zhou T; Zhou Z; Zhang H; Chen W Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237 [TBL] [Abstract][Full Text] [Related]
3. Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy. Hu D; Xiong C; Wang T; Zhou T; Liang J; Li Y IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1961-1970. PubMed ID: 35793296 [TBL] [Abstract][Full Text] [Related]
4. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259 [TBL] [Abstract][Full Text] [Related]
5. Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking. Etenzi E; Borzuola R; Grabowski AM J Neuroeng Rehabil; 2020 Jul; 17(1):104. PubMed ID: 32718344 [TBL] [Abstract][Full Text] [Related]
6. Development of an unpowered ankle exoskeleton for walking assist. Leclair J; Pardoel S; Helal A; Doumit M Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353 [No Abstract] [Full Text] [Related]
7. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
8. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
9. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance. Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton. Lee D; McLain B; Kang I; Young A IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531 [TBL] [Abstract][Full Text] [Related]
11. Design of an Ankle Exoskeleton That Recycles Energy to Assist Propulsion During Human Walking. Wang C; Dai L; Shen D; Wu J; Wang X; Tian M; Shi Y; Su C IEEE Trans Biomed Eng; 2022 Mar; 69(3):1212-1224. PubMed ID: 34665715 [TBL] [Abstract][Full Text] [Related]
12. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds. Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372 [TBL] [Abstract][Full Text] [Related]
13. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton. Nasiri R; Ahmadi A; Ahmadabadi MN IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466 [TBL] [Abstract][Full Text] [Related]
14. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714 [TBL] [Abstract][Full Text] [Related]
15. Mechanics and energetics of level walking with powered ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674 [TBL] [Abstract][Full Text] [Related]
16. Reducing the energy cost of human walking using an unpowered exoskeleton. Collins SH; Wiggin MB; Sawicki GS Nature; 2015 Jun; 522(7555):212-5. PubMed ID: 25830889 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349 [TBL] [Abstract][Full Text] [Related]
18. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. Ding Y; Panizzolo FA; Siviy C; Malcolm P; Galiana I; Holt KG; Walsh CJ J Neuroeng Rehabil; 2016 Oct; 13(1):87. PubMed ID: 27716439 [TBL] [Abstract][Full Text] [Related]
19. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. Panizzolo FA; Galiana I; Asbeck AT; Siviy C; Schmidt K; Holt KG; Walsh CJ J Neuroeng Rehabil; 2016 May; 13(1):43. PubMed ID: 27169361 [TBL] [Abstract][Full Text] [Related]
20. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. Lee S; Kim J; Baker L; Long A; Karavas N; Menard N; Galiana I; Walsh CJ J Neuroeng Rehabil; 2018 Jul; 15(1):66. PubMed ID: 30001726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]