These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33690124)
21. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints. Wang J; Lu CH; Liu JX; Dai LY; Kong XZ BMC Bioinformatics; 2019 Dec; 20(Suppl 22):718. PubMed ID: 31888442 [TBL] [Abstract][Full Text] [Related]
22. Joint Feng CM; Gao YL; Liu JX; Wang J; Wang DQ; Wen CG Biomed Res Int; 2017; 2017():5073427. PubMed ID: 28470011 [TBL] [Abstract][Full Text] [Related]
23. A Tensor Method based on Enhanced Tensor Nuclear Norm and Hypergraph Laplacian Regularization for Pan-Cancer Omics Data Analysis. Yu N; Zhang Y; Gao R IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015665 [TBL] [Abstract][Full Text] [Related]
24. Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components. Park M; Kim D; Moon K; Park T Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147797 [TBL] [Abstract][Full Text] [Related]
25. Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples. Shi J; Luo Z Comput Biol Med; 2010 Aug; 40(8):723-32. PubMed ID: 20637456 [TBL] [Abstract][Full Text] [Related]
26. Incorporating biological information in sparse principal component analysis with application to genomic data. Li Z; Safo SE; Long Q BMC Bioinformatics; 2017 Jul; 18(1):332. PubMed ID: 28697740 [TBL] [Abstract][Full Text] [Related]
27. A Mixed-Norm Laplacian Regularized Low-Rank Representation Method for Tumor Samples Clustering. Wang J; Liu JX; Zheng CH; Wang YX; Kong XZ; Wen CG IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):172-182. PubMed ID: 29990217 [TBL] [Abstract][Full Text] [Related]
28. A Low-Rank Representation Method Regularized by Dual-Hypergraph Laplacian for Selecting Differentially Expressed Genes. Xu XX; Dai LY; Kong XZ; Liu JX Hum Hered; 2019; 84(1):21-33. PubMed ID: 31466058 [TBL] [Abstract][Full Text] [Related]
29. Multi-View Enhanced Tensor Nuclear Norm and Local Constraint Model for Cancer Clustering and Feature Gene Selection. Qiao Q; Yuan SS; Shang J; Liu JX J Comput Biol; 2023 Aug; 30(8):889-899. PubMed ID: 37471239 [TBL] [Abstract][Full Text] [Related]
30. Novel Regularization Method for Biomarker Selection and Cancer Classification. Liu XY; Wang S; Zhang H; Zhang H; Yang ZY; Liang Y IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1329-1340. PubMed ID: 30716046 [TBL] [Abstract][Full Text] [Related]
31. Feature weight estimation for gene selection: a local hyperlinear learning approach. Cai H; Ruan P; Ng M; Akutsu T BMC Bioinformatics; 2014 Mar; 15():70. PubMed ID: 24625071 [TBL] [Abstract][Full Text] [Related]
32. Improving gene expression cancer molecular pattern discovery using nonnegative principal component analysis. Han X Genome Inform; 2008; 21():200-11. PubMed ID: 19425159 [TBL] [Abstract][Full Text] [Related]
33. Robust sparse accelerated failure time model for survival analysis. Shen H; Chai H; Li M; Zhou Z; Liang Y; Yang Z; Huang H; Liu X; Zhang B Technol Health Care; 2018; 26(S1):55-63. PubMed ID: 29689755 [TBL] [Abstract][Full Text] [Related]
34. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Ma Y; Liu Q Comput Biol Med; 2022 Jun; 145():105503. PubMed ID: 35427986 [TBL] [Abstract][Full Text] [Related]
35. Sparse PCA via l Li Z; Nie F; Bian J; Wu D; Li X IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):5322-5328. PubMed ID: 34665722 [TBL] [Abstract][Full Text] [Related]
36. Correntropy-Induced Robust Low-Rank Hypergraph. Jin T; Ji R; Gao Y; Sun X; Zhao X; Tao D IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30596578 [TBL] [Abstract][Full Text] [Related]
37. Fuzzy Sparse Deviation Regularized Robust Principal Component Analysis. Gao Y; Lin T; Pan J; Nie F; Xie Y IEEE Trans Image Process; 2022; 31():5645-5660. PubMed ID: 35994528 [TBL] [Abstract][Full Text] [Related]
38. Object Weighting: A New Clustering Approach to Deal with Outliers and Cluster Overlap in Computational Biology. Gondeau A; Aouabed Z; Hijri M; Peres-Neto P; Makarenkov V IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):633-643. PubMed ID: 31180868 [TBL] [Abstract][Full Text] [Related]
39. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Li M; Qi Z; Liu L; Lou M; Deng S J Bioinform Comput Biol; 2024 Aug; 22(4):2450014. PubMed ID: 39183679 [TBL] [Abstract][Full Text] [Related]
40. Type-2 Fuzzy PCA Approach in Extracting Salient Features for Molecular Cancer Diagnostics and Prognostics. Singh V; Verma NK; Cui Y IEEE Trans Nanobioscience; 2019 Jul; 18(3):482-489. PubMed ID: 31107656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]