BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33690300)

  • 1. Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
    Meemon P; Lenaphet Y; Widjaja J
    Appl Opt; 2021 Mar; 60(7):2069-2076. PubMed ID: 33690300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral fusing Gabor domain optical coherence microscopy.
    Meemon P; Widjaja J; Rolland JP
    Opt Lett; 2016 Feb; 41(3):508-11. PubMed ID: 26907410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.
    Tankam P; Santhanam AP; Lee KS; Won J; Canavesi C; Rolland JP
    J Biomed Opt; 2014 Jul; 19(7):71410. PubMed ID: 24695868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed processing architecture for spectral-domain optical coherence microscopy.
    Chelliyil RG; Ralston TS; Marks DL; Boppart SA
    J Biomed Opt; 2008; 13(4):044013. PubMed ID: 19021341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gabor fusion master slave optical coherence tomography.
    Cernat R; Bradu A; Israelsen NM; Bang O; Rivet S; Keane PA; Heath DG; Rajendram R; Podoleanu A
    Biomed Opt Express; 2017 Feb; 8(2):813-827. PubMed ID: 28270987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of a liquid lens enabled in vivo optical coherence microscope.
    Murali S; Meemon P; Lee KS; Kuhn WP; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D145-56. PubMed ID: 20517356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumetric optical coherence microscopy with a high space-bandwidth-
    Liu S; Mulligan JA; Adie SG
    Biomed Opt Express; 2018 Jul; 9(7):3137-3152. PubMed ID: 29984088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real Time Gabor-Domain Optical Coherence Microscopy for 3D Imaging.
    Rolland JP; Canavesi C; Tankam P; Cogliati A; Lanis M; Santhanam AP
    Stud Health Technol Inform; 2016; 220():335-40. PubMed ID: 27046601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computed optical coherence microscopy of mouse brain ex vivo.
    Wu M; Small DM; Nishimura N; Adie SG
    J Biomed Opt; 2019 Nov; 24(11):1-18. PubMed ID: 31773937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.
    Cogliati A; Canavesi C; Hayes A; Tankam P; Duma VF; Santhanam A; Thompson KP; Rolland JP
    Opt Express; 2016 Jun; 24(12):13365-74. PubMed ID: 27410354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh speed spectral-domain optical coherence microscopy.
    Lee HC; Liu JJ; Sheikine Y; Aguirre AD; Connolly JL; Fujimoto JG
    Biomed Opt Express; 2013; 4(8):1236-54. PubMed ID: 24009989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing full-field metrology: rapid 3D imaging with geometric phase ferroelectric liquid crystal technology in full-field optical coherence microscopy.
    Zheng W; Kou SS; Sheppard CJR; Roy M
    Biomed Opt Express; 2023 Jul; 14(7):3433-3445. PubMed ID: 37497495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed optical interferometric tomography for high-speed volumetric cellular imaging.
    Liu YZ; Shemonski ND; Adie SG; Ahmad A; Bower AJ; Carney PS; Boppart SA
    Biomed Opt Express; 2014 Sep; 5(9):2988-3000. PubMed ID: 25401012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative assessment of human donor corneal endothelium with Gabor domain optical coherence microscopy.
    Yoon C; Mietus A; Qi Y; Stone J; Escudero J; Canavesi C; Tankam P; Hindman H; Rolland J
    J Biomed Opt; 2019 Aug; 24(8):1-9. PubMed ID: 31389221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.
    Kumar A; Kamali T; Platzer R; Unterhuber A; Drexler W; Leitgeb RA
    Biomed Opt Express; 2015 Apr; 6(4):1124-34. PubMed ID: 25908999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy.
    Yoon C; Qi Y; Mestre H; Canavesi C; Marola OJ; Cogliati A; Nedergaard M; Libby RT; Rolland JP
    Biomed Opt Express; 2019 Dec; 10(12):6242-6257. PubMed ID: 31853397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy.
    Aguirre AD; Chen Y; Bryan B; Mashimo H; Huang Q; Connolly JL; Fujimoto JG
    J Biomed Opt; 2010; 15(1):016025. PubMed ID: 20210470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.