These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33690340)

  • 1. Modeling, optimization, and validation of an extended-depth-of-field optical coherence tomography probe based on a mirror tunnel.
    Okoro C; Cunningham CR; Baillargeon AR; Wartak A; Tearney GJ
    Appl Opt; 2021 Mar; 60(8):2393-2399. PubMed ID: 33690340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe.
    Yin B; Chu KK; Liang CP; Singh K; Reddy R; Tearney GJ
    Opt Express; 2016 Mar; 24(5):5555-5564. PubMed ID: 29092377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe.
    Qiu J; Han T; Liu Z; Meng J; Ding Z
    Opt Lett; 2020 Feb; 45(4):976-979. PubMed ID: 32058521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended depth of focus for coherence-based cellular imaging.
    Yin B; Hyun C; Gardecki JA; Tearney GJ
    Optica; 2017 Aug; 4(8):959-965. PubMed ID: 29675447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography.
    Wang W; Wang G; Ma J; Cheng L; Guan BO
    Opt Express; 2019 Jan; 27(2):358-366. PubMed ID: 30696123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended depth of focus by self-imaging wavefront division with the mirror tunnel.
    Sheil CJ; Wartak A; Spicer GLC; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2022 Apr; 39(4):711-725. PubMed ID: 35471398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography.
    Ding Z; Qiu J; Shen Y; Chen Z; Bao W
    Opt Lett; 2017 Jul; 42(14):2814-2817. PubMed ID: 28708176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized precalibration-based Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography.
    Wu T; Zhang L; Wang J; Huo W; Lu Y; He C; Liu Y
    Opt Lett; 2020 Apr; 45(8):2470-2473. PubMed ID: 32287261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculations of second harmonic generation with radially polarized excitations by elliptical mirror focusing.
    Wang W; Wu B; Liu P; Liu J; Tan J
    J Microsc; 2019 Jan; 273(1):36-45. PubMed ID: 30252126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast simulation and design of the fiber probe with a fiber-based pupil filter for optical coherence tomography using the eigenmode expansion approach.
    Qiu J; Meng J; Liu Z; Han T; Ding Z
    Opt Express; 2021 Jan; 29(2):2172-2183. PubMed ID: 33726418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.
    Singh K; Reddy R; Sharma G; Verma Y; Gardecki JA; Tearney G
    Lasers Surg Med; 2018 Mar; 50(3):230-235. PubMed ID: 29105794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo endoscopic multi-beam optical coherence tomography.
    Standish BA; Lee KK; Mariampillai A; Munce NR; Leung MK; Yang VX; Vitkin IA
    Phys Med Biol; 2010 Feb; 55(3):615-22. PubMed ID: 20071753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral Resolution of a Commercial Optical Coherence Tomography Instrument.
    Spaide RF; Otto T; Caujolle S; Kübler J; Aumann S; Fischer J; Reisman C; Spahr H; Lessmann A
    Transl Vis Sci Technol; 2022 Jan; 11(1):28. PubMed ID: 35044444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2015 Feb; 23(4):4935-45. PubMed ID: 25836528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of an optical probe with a phase filter for extended depth of focus.
    Xing J; Kim J; Yoo H
    Opt Express; 2016 Jan; 24(2):1037-44. PubMed ID: 26832486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended depth-of-field microscopic imaging with a variable focus microscope objective.
    Liu S; Hua H
    Opt Express; 2011 Jan; 19(1):353-62. PubMed ID: 21263574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients.
    Wong BJ; Jackson RP; Guo S; Ridgway JM; Mahmood U; Su J; Shibuya TY; Crumley RL; Gu M; Armstrong WB; Chen Z
    Laryngoscope; 2005 Nov; 115(11):1904-11. PubMed ID: 16319597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging.
    Duan C; Sun J; Samuelson S; Xie H
    Appl Opt; 2013 Sep; 52(26):6589-98. PubMed ID: 24085137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography.
    Ryu SY; Choi HY; Na J; Choi WJ; Lee BH
    Appl Opt; 2008 Apr; 47(10):1510-6. PubMed ID: 18382579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circumferential-scanning endoscopic optical coherence tomography probe based on a circular array of six 2-axis MEMS mirrors.
    Luo S; Wang D; Tang J; Zhou L; Duan C; Wang D; Liu H; Zhu Y; Li G; Zhao H; Wu Y; An X; Li X; Liu Y; Huo L; Xie H
    Biomed Opt Express; 2018 May; 9(5):2104-2114. PubMed ID: 29760973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.