BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33690425)

  • 21. Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate.
    Wang N; Wang R; Teng H; Li D; Wei Z
    Appl Opt; 2012 Apr; 51(12):1905-9. PubMed ID: 22534895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating.
    Elhadj S; Steele WA; VanBlarcom DS; Hawley RA; Schaffers KI; Geraghty P
    Appl Opt; 2017 Mar; 56(8):2217-2225. PubMed ID: 28375305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate.
    Yamakawa K; Aoyama M; Matsuoka S; Kase T; Akahane Y; Takuma H
    Opt Lett; 1998 Sep; 23(18):1468-70. PubMed ID: 18091819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.
    Richou B; Schertz I; Gobin I; Richou J
    Appl Opt; 1997 Mar; 36(7):1610-4. PubMed ID: 18250843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation.
    Sato S; Ashida H; Arai T; Shi YW; Matsuura Y; Miyagi M
    Opt Lett; 2000 Jan; 25(1):49-51. PubMed ID: 18059778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repetitive vacuum ultraviolet xenon excimer laser.
    Edwards CB; Hutchinson MH; Bradley DJ; Hutchinson MD
    Rev Sci Instrum; 1979 Oct; 50(10):1201. PubMed ID: 18699360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary peak of downstream light field modulation caused by Gaussian mitigation pits on the rear KDP surface.
    Yang H; Cheng J; Liu Z; Liu Q; Zhao L; Tan C; Wang J; Chen M
    Opt Express; 2020 Sep; 28(19):28479-28490. PubMed ID: 32988117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apparatus for the measurement of optical absorptivity in laser mirrors.
    Hoffman RA
    Appl Opt; 1974 Jun; 13(6):1405-11. PubMed ID: 20126206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Damage on fused silica optics caused by laser ablation of surface-bound microparticles.
    Raman RN; Demos SG; Shen N; Feigenbaum E; Negres RA; Elhadj S; Rubenchik AM; Matthews MJ
    Opt Express; 2016 Feb; 24(3):2634-47. PubMed ID: 26906835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum.
    Alessi DA; Carr CW; Hackel RP; Negres RA; Stanion K; Fair JE; Cross DA; Nissen J; Luthi R; Guss G; Britten JA; Gourdin WH; Haefner C
    Opt Express; 2015 Jun; 23(12):15532-44. PubMed ID: 26193533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers.
    Lumeau J; Glebova L; Glebov LB
    Appl Opt; 2011 Oct; 50(30):5905-11. PubMed ID: 22015419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser.
    Reagan BA; Wernsing KA; Curtis AH; Furch FJ; Luther BM; Patel D; Menoni CS; Rocca JJ
    Opt Lett; 2012 Sep; 37(17):3624-6. PubMed ID: 22940970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon removal from a mirror-like gold surface by UV light, RF plasma, and IR laser exposure: a comparative study.
    Yadav PK; Gupta RK; Choubey AK; Ali S; Goutam UK; Modi MH
    Appl Opt; 2021 Jan; 60(1):89-97. PubMed ID: 33362083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of microwave radiation by nonlinear interaction of a high-power, high-repetition rate, 1064 nm laser in KTiOPO4 crystals.
    Borghesani AF; Braggio C; Carugno G
    Opt Lett; 2013 Nov; 38(21):4465-8. PubMed ID: 24177120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3.5-mJ 150-fs Fe:ZnSe hybrid mid-IR femtosecond laser at 4.4  μm for driving extreme nonlinear optics.
    Migal E; Pushkin A; Bravy B; Gordienko V; Minaev N; Sirotkin A; Potemkin F
    Opt Lett; 2019 May; 44(10):2550-2553. PubMed ID: 31090729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for
    Krolopp Á; Csákányi A; Haluszka D; Csáti D; Vass L; Kolonics A; Wikonkál N; Szipőcs R
    Biomed Opt Express; 2016 Sep; 7(9):3531-3542. PubMed ID: 27699118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser.
    Guo Y; Peng W; Su J; Lu H; Peng K
    Opt Express; 2020 Feb; 28(4):5866-5874. PubMed ID: 32121801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-repetition-rate, high-peak-power, linear-polarized 473 nm Nd:YAG/BiBO blue laser by extracavity frequency doubling.
    Chen F; Yu X; Yan R; Li X; Wang C; Yu J; Zhang Z
    Opt Lett; 2010 Aug; 35(16):2714-6. PubMed ID: 20717433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-doubled FDML-MOPA laser in the visible.
    Karpf S; Jalali B
    Opt Lett; 2019 Dec; 44(24):5913-5916. PubMed ID: 32628184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal lensing effects and nonlinear refractive indices of fluoride crystals induced by high-power ultrafast lasers.
    Andrus L; Ben-Yakar A
    Appl Opt; 2020 Oct; 59(28):8806-8813. PubMed ID: 33104564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.