These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33690434)

  • 1. Improved method for gas temperature and pressure retrieval in Brillouin lidar remote sensing.
    Zhang P; Liang K
    Appl Opt; 2021 Jan; 60(3):652-661. PubMed ID: 33690434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases.
    Gu Z; Ubachs W
    J Chem Phys; 2014 Sep; 141(10):104320. PubMed ID: 25217929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Dependence of the Rayleigh Brillouin Spectrum Linewidth in Air and Nitrogen.
    Liang K; Xu J; Zhang P; Wang Y; Niu Q; Peng L; Zhou B
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures.
    Gu Z; Witschas B; van de Water W; Ubachs W
    Appl Opt; 2013 Jul; 52(19):4640-51. PubMed ID: 23842262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.
    Witschas B; Vieitez MO; van Duijn EJ; Reitebuch O; van de Water W; Ubachs W
    Appl Opt; 2010 Aug; 49(22):4217-27. PubMed ID: 20676176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air.
    Witschas B; Gu Z; Ubachs W
    Opt Express; 2014 Dec; 22(24):29655-67. PubMed ID: 25606897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere.
    Witschas B; Lemmerz C; Reitebuch O
    Appl Opt; 2012 Sep; 51(25):6207-19. PubMed ID: 22945169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical model for Rayleigh-Brillouin line shapes in air.
    Witschas B
    Appl Opt; 2011 Jan; 50(3):267-70. PubMed ID: 21263720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh-Brillouin scattering.
    Xu J; Witschas B; Kabelka PG; Liang K
    Opt Lett; 2021 Jul; 46(13):3320-3323. PubMed ID: 34197446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air.
    Ma Y; Li H; Gu Z; Ubachs W; Yu Y; Huang J; Zhou B; Wang Y; Liang K
    Opt Express; 2014 Jan; 22(2):2092-104. PubMed ID: 24515218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a Rayleigh-Brillouin scattering spectrometer with a high spectral resolution for rapid gas temperature detection.
    Yan H; Wu T; Pi S; Wu Q; Ye C; He X
    Opt Lett; 2023 Nov; 48(22):5931-5934. PubMed ID: 37966755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of auxiliary atmospheric state parameters on the aerosol optical properties retrieval errors of high-spectral-resolution lidar.
    Zhang Y; Liu D; Zheng Z; Liu Z; Hu D; Qi B; Liu C; Bi L; Zhang K; Wen C; Jiang L; Liu Y; Ke J; Zang Z
    Appl Opt; 2018 Apr; 57(10):2627-2637. PubMed ID: 29714250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Sensing of Seawater Temperature and Salinity Profiles by the Brillouin Lidar Based on a Fizeau Interferometer and Multichannel Photomultiplier Tube.
    Wang Y; Xu Y; Chen P; Liang K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Tenti S6 model for hydrocarbon fuels at elevated temperatures using filtered Rayleigh scattering measurements.
    Pu J; Sutton JA
    Opt Lett; 2020 Oct; 45(19):5579-5582. PubMed ID: 33001951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent high-spectral-resolution lidar for the measurement of the atmospheric Mie-Rayleigh-Brillouin backscatter spectrum.
    Chen X; Dai G; Wu S; Liu J; Yin B; Wang Q; Zhang Z; Qin S; Wang X
    Opt Express; 2022 Oct; 30(21):38060-38076. PubMed ID: 36258379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear approximation of Rayleigh-Brillouin scattering spectra.
    Binietoglou I; Giampouras P; Belegante L
    Appl Opt; 2016 Sep; 55(27):7707-11. PubMed ID: 27661601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Rayleigh-Brillouin scattering spectrometer for fast high-gas-temperature measurements.
    Pi S; Wu T; Yan H; Yang J; Ye C; He X
    Opt Lett; 2024 Jul; 49(14):3850-3853. PubMed ID: 39008724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar.
    Zhou Y; Liu D; Xu P; Liu C; Bai J; Yang L; Cheng Z; Tang P; Zhang Y; Su L
    Opt Express; 2017 May; 25(10):11813-11826. PubMed ID: 28788740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Reitebuch O
    Opt Lett; 2014 Apr; 39(7):1972-5. PubMed ID: 24686652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature-salinity-depth structure of the upper-ocean on the frequency shift of Brillouin LiDAR.
    Xu N; Liu Z; Zhang X; Xu Y; Luo N; Li S; Xu J; He X; Shi J
    Opt Express; 2021 Oct; 29(22):36442-36452. PubMed ID: 34809054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.